
High-precision Autonomous Flight in
Constrained Shipboard Environments

Shichao Yang, Zheng Fang, Sezal Jain,
Geetesh Dubey, Silvio Maeta, Stephan Roth,

Sebastian Scherer, Yu Zhang and Stephen Nuske

CMU-RI-TR-15-06

Feb 2015

Robotics Institute
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

c⃝ Carnegie Mellon University

Abstract
This paper addresses the problem of autonomous navigation of a micro aerial

vehicle (MAV) inside of a constrained shipboard environment to aid in fire con-
trol, which might be perilous or inaccessible for humans. The environment is
GPS-denied and visually degraded, containing narrow passageways, doorways
and small objects protruding from the wall, which makes existing 2D LIDAR,
vision or mechanical bumper-based autonomous navigation solutions fail. To re-
alize autonomous navigation in such challenging environments, we first propose a
fast and robust state estimation algorithm that fuses estimates from a direct depth
odometry method and a Monte Carlo localization algorithm with other sensor in-
formation in a two-level fusion framework. Then, an online motion planning al-
gorithm that combines trajectory optimization with receding horizon control is
proposed for fast obstacle avoidance. All the computations are done in real-time
onboard our customized MAV platform. We validate the system by running ex-
periments in different environmental conditions. The results of over 10 runs show
that our vehicle robustly navigates 20m long corridors only 1m wide and goes
through a very narrow doorway (only 4cm clearance on each side) completely
autonomously even when it is completely dark or full of light smoke.

I

Contents
1 Introduction 1

2 Related Work 2

3 System Overview 3

4 Real-time Pose Estimation 4
4.1 Low-frequency Pose Estimation 5

4.1.1 Robust Direct RGB-D Odometry Estimation 5
4.1.2 Particle Filtering Based Localization 9

4.2 High-frequency Pose Estimation 13

5 Motion Planning 15
5.1 Path Planning . 16
5.2 Spline Fitting . 17

5.2.1 Minimize snap . 19
5.2.2 Optimize time . 19

6 Control 21
6.1 Trajectory Controller . 21
6.2 Autonomous Takeoff and Landing 22

7 Smoke and Fire Detection 22
7.1 Fire Detection . 23
7.2 Smoke Detection . 23

8 Real-world Experiments 24
8.1 Real-time Pose Estimation Experiments 25

8.1.1 Fast Direct RGB-D Odometry 25
8.1.2 Illustrative Localization Examples 25
8.1.3 Localization Accuracy 30
8.1.4 Runtime Performance Evaluation 31

8.2 Planning Experiments . 32
8.2.1 Mission Planner . 32
8.2.2 Obstacle Mapping . 34
8.2.3 Local Planner . 35

8.3 Control Experiments . 36

II

8.4 Final Demo Experiments . 37
8.4.1 Mission Description . 37
8.4.2 Experimental Results of Autonomous Flights 39
8.4.3 Lessons Learned . 43

9 Conclusion 44

III

1 Introduction
Over the past few years Micro Air Vehicles(MAV) have gained a wide popular-
ity in both military and civil domains. Surveillance and reconnaissance is one
area where they have made a huge impact because of greater mobility and cost
effectiveness as compared to ground vehicles. In this paper, we aim to develop a
MAV that is capable of autonomously navigating through a shipboard to aid in fire
control, damage assessment and inspection, which might be perilous and or inac-
cessible for humans. Such a constrained environment poses various challenges
for navigating though narrow corridors, tight doorways and also because they can
be visually degraded: potentially dark, smoke-filled and GPS-denied. An illus-
trative picture is shown in Fig. 1. To successfully fulfil this mission, the vehicle
must localize itself accurately and avoid obstacles safely. Besides, all the compu-
tation of state estimation, motion planning and control needs to be done onboard
in real-time.

Figure 1: Autonomous MAV for fire-detection inside a ship: The left picture
shows MAV’s autonomous flight through doorways. The right picture shows the
testing scenario with fire.

For successful operation in such environments, we need to address these chal-
lenging problems. First, the MAV should be small enough to travel in the narrow
corridors with tight doorways (65cm width, 8cm clearance). Therefore, it can only
use lightweight sensors with limited range and computers with limited computa-
tional resources. Second, visually degraded environments and some areas free
of clutter(long corridors) provide scanty visual and geometry features and cues
respectively, posing great difficulty for accurate state estimation. In some areas,

1

there are many obstacles on the wall, making it difficult for fast obstacle avoid-
ance. In addition, air turbulence in confined spaces poses difficulty for precise
control.

To address the above challenges, we build a robust and efficient autonomous
navigation system with the following contributions. We first propose a fast depth
odometry method which directly recovers the ego-motion from a series of depth
images. Then, a Monte Carlo localization algorithm is used to estimate the ab-
solute pose of the MAV in a given 3D map. After that, the pose estimates from
odometry and localization are fused with other sensor information in a two-level
fusion framework to get fast and robust state estimation for real-time control.
Finally, a fast online motion planning algorithm that combines trajectory opti-
mization with receding horizon control is proposed for obstacle avoidance. We
demonstrate the effectiveness of our system through both simulation and field ex-
periments. The experiment is performed in a constrained shipboard containing a
20m long, 1m wide corridor and a 8cm clearance doorway. We conducted more
than 10 runs under various environment conditions, from normal to complete dark
and also in smoke-filled environments to demonstrate autonomous navigation ca-
pabilities of the MAV.

The rest of paper is organized as follows. In Section 2, we present the related
work. System setup and diagram is shown in Section 3. Section 5 and 6 describe
the novel approach for a robust and reliable state estimation and realtime smooth
motion planning correspondingly. Controller is described in Section 7. Exper-
iments demonstrating each module is presented in Section 8 and conclusion is
made in Section 9.

2 Related Work
In recent years, a number of autonomous navigation solutions have been pro-
posed for MAVs. Those solutions mainly differ in the sensors used to solve the
autonomous navigation problem, the amount of processing that is performed on-
board/offboard and the assumptions made about the environment (outdoor/indoor,
structured/unstructured).

2D Laser scanner has been extensively and successfully used for autonomous
navigation for its accuracy and speed, for example, in [1, 2, 3]. However, those
systems are usually only suitable for structured or 2.5D environments. Recently,
there are also many vision-based navigation systems since cameras can provide
rich information and have low weight, low power and low price. For example,

2

stereo camera is used in [4] and [5], monocular camera with IMU is used in [6, 7,
8], but vision is sensitive to illumination changes and could not work in darkness.
Recently, RGB-D cameras have become very popular for autonomous navigation
of indoor MAVs [9, 10, 11] because they can provide both image and depth. For
example in [10], a RGB-D visual odometry method is proposed for real-time pose
estimation of a MAV and a 3D map is create offline. In [11], a fast visual odometry
method is used for pose estimation and 3D visual SLAM is used for constructing
a 3D octomap in real-time.

Unfortunately, the existing autonomous navigation methods can not work in
our case since our application environment is a confined, complex visually de-
graded 3D environment that may be very dark or filled with smoke. For example,
for state estimation, vision-based methods [10, 8] could not work in our case. For
obstacle avoidance and motion planning, many above papers compute paths of-
fline [2] [11], or heavily rely on prior map [1]. Some papers online generates steer-
ing angle by vector field histogram [5] or waypoints by sampling planner (RRT*)
[3]. But these commands are not suitable for precise control in constrained narrow
environment. In our proposed system, we mainly use depth images for odome-
try estimation, localization. Online motion planning generates optimal dynamic-
feasible smooth trajectories suitable for precise control. Therefore, they are not
sensitive to illumination and can work in completely dark even light smoke-filled
environments.

3 System Overview
The platform we use for our experiment is a customized MAV as shown in Fig.
2. It’s mainly composed of two computation units. One unit is an ARM based
Quadcore embedded computer (Odroid XU3), responsible for high-level task pro-
cessing, such as odometry estimation, localization and motion planning, etc. The
other one is the Pixhawk flight controller unit (FCU) which is used for multi-
sensor data fusion and real-time control. A fordward-looking RGB-D camera is
used for pose estimation and motion planning. A downward-looking optical flow
camera is used for velocity estimation and a point laser is used for height estima-
tion. Besides, a FLIR camera is used for fire detection.

To get the robust, low-delay state estimates, a two-level estimation architecture
is designed as shown in Fig. 2. The odometry (15Hz) is first fused with MicroS-
train IMU in UKF. Then, the outputs of UKF (50Hz) and localization (15Hz) are
fused with optical flow, raw data from sensors (FCU IMU and point laser) in an

3

Laser

PX4flow

Pixhawk

Odroid

RGB-D Camera

LocalizationOdometry Obstacle
Mapping

Local
Planner

Global
Planner

RGB-D Camera

MicroStrain

Precomputed

online
UKF

IMU

Position
Controller

Attitude
Controller

Odroid XU3

PX4flow Laser Altimeter

Vehicle

Pixhawk

Offline
Map

FLIR Camera

EKF

EKF

100Hz

50Hz

15Hz

15Hz

15Hz

2Hz

100Hz 250Hz

Figure 2: System Overview: Left image shows the MAV platform, right image
shows the software architecture

EKF framework on the FCU to provide a high frequency (100Hz) state estimate
for real-time control. This a bit redundant estimation strategy improves the ro-
bustness and safety of our system in challenging environments. RGB-D camera is
also used for 3D occupancy mapping (15Hz) [12] and motion planning to gener-
ate collision-free trajectories (2Hz). Trajectories are fed into a hierarchical control
approach for accurate tracking [13] based on differential flatness. It is composed
of outer position control running at 100Hz and inner attitude control running at
250Hz.

4 Real-time Pose Estimation
Stable and precise control of an autonomous MAV demands fast and accurate esti-
mates of the vehicle’s pose and velocity. Especially, MAVs operating in cluttered
indoor environments need pose updating at high rates with little latency for po-
sition control. Real-time and accurate state estimation is most important during
tasks that require high accuracy, such as indoor flight, obstacle avoidance and au-
tonomous landing. In this project, we want to solve two problems, relative pose
and absolute pose estimation, by only using onboard sensors and computation
resources. For relative pose estimation, namely odometry estimation, we want
to develop a robust and real-time odometry estimation method that can adapt to
different kinds of indoor environments, such as structured environments, cluttered
environments and illumination changing and smoky environments. For absolute

4

pose estimation, we want to estimate the absolute 6DOF state of the robot in a
given 3D map and track it in real-time during the mission.

4.1 Low-frequency Pose Estimation
Current RGB-D odometry estimation methods mainly use RGB information for
motion estimation. Therefore, they cannot work in featureless or degraded visual
environments. We propose to do the opposite. We try to estimate the pose using
as little RGB information as possible. Our method uses depth images to calculate
the frame-to-frame motion. In this paper, we use a direct method to compute the
frame to frame motion from depth images directly, which is robust and much faster
than traditional ICP based methods. However, if only depth image are used, the
odometry will suffer from a degeneration problem in some challenging environ-
ments. Our method only tries to use RGB information when the degeneration is
very severe. When severe degeneration happens, we try to use dense visual odom-
etry method to calculate the frame-to-frame motion. By doing so, our odometry
method can work very robustly in degraded visual environments.

4.1.1 Robust Direct RGB-D Odometry Estimation

1) Direct Motion Estimation from Depth Images Most existing depth-based
motion estimation methods are based on registration algorithms, such as ICP [14],
3D NDT [15] or 3D geometric feature based methods [16]. Those methods can get
very accurate relative pose estimation if a dense point cloud is available. However,
they are too slow and computationally heavy to run on a MAV. In this paper, a
direct method [17] is used to calculate the frame-to-frame motion estimation. It
directly works on the depth image without detecting any features or doing any
additional transform.

Let a 3D point R = (X,Y, Z)T (measured in the depth camera’s coordinate
system) is captured at pixel position r = (x, y)T in the depth imageZt. This point
undergoes a 3D motion ∆R = (∆X,∆Y,∆Z)T , which results in an image mo-
tion ∆r between frames t0 and t1. Given that the depth of the 3D point will have
moved by ∆Z, the depth value captured at this new image location r + ∆r will
have consequently changed by this amount:

Z1(r +∆r) = Z0(r) + ∆Z (1)

This equation is called range change constraint equation. Taking the first-order
Taylor expansion of the term Z1(r+∆r) generates a pixel-based constraint relat-

5

ing the gradient of the depth image ∇Z1 and the temporal depth difference to the
unknown pixel motion and the change of depth as follows:

Z1(r +∆r) = Z1(r) +∇Z1(r) ∗∆r = Z0(r) + ∆Z (2)

As it is know to all, any small 2D displacement ∆r can be related directly to
the 3D displacement ∆R which gave rise to it by differentiating the perspective
projection equation with respect to the components of the 3D position R

∂r

∂R
=

∆r

∆R
= K(r) =

 fx
Z

0 −X fx
Z2

0
fy
Z
−Y fy

Z2

 (3)

Substituting Eq. 3 into Eq. 2, we can get a linear constraint equation of three
unknowns relating the motion ∆R of a 3D point imaged at pixel r to the gradient
of the depth image ∇Z1 = (Zx, Zy) and the temporal depth difference:

(Zx, Zy,−1)
(
∆r
∆Z

)
= Z0(r)− Z1(r) (4)

Let R = (X, Y, Z)T be a vector to a point on the surface (measured in a senor-
centered Cartesian coordinate system). If the sensor moves with instantaneous
transnational velocity v and instantaneous rotational velocity ω with respect to the
environment, then the point R appears to move with a velocity

dR

dt
= −v − ω ×R (5)

with respect to the sensor. Substituting Eq. 5 into Eq. 4, we can get:

−Y − Zyfy − ZxXY
fx
Z2
− ZyY

2 fy
Z2

X + Zxfx + ZxX
2 fx
Z2

+ ZyXY
fy
Z2

−ZxY
fx
Z

+ ZyX
fy
Z

Zx
fx
Z

Zy
fy
Z

−1− ZxX
fx
Z2
− ZyY

fy
Z2

T

ωx

ωy

ωz

vx
vy
vz

 = Z0(r)− Z1(r) (6)

6

2) Dealing with Degeneration Problem The direct depth-based method can
estimate the frame-to-frame transform very fast. However, in environments with
few geometric features, this method will suffer from the degeneration problem,
for example when the camera can only see a ground plane or parallel walls. In
these ”ill-conditioned” cases which are really common in indoor environments,
the direct depth-based method will produce wrong estimates. In such cases, the
only way to solve the problem is to try to use additional information, such as RGB
information or IMU information.

In our algorithm, we try to detect when the degeneration happens. And, when
the degeneration happens, we try to use visual information to calculate the frame-
to-frame transform. Since we want to get a very fast odometry estimation with low
CPU usage, we do not always incorporate the visual information into the depth
image based odometry estimation method. Though joint optimization methods
[18],[19] may get more accurate estimation, it is much more expensive to com-
pute. In our system, we are not too concern with the accuracy of odometry es-
timation method since our localization algorithm can correct the drift of visual
odometry. Compared to accuracy, robustness is more important for localization
since a sudden odometry failure or wrong estimation will influence the localiza-
tion performance much more than an inaccurate odometry estimation.

As you can see from Eq. 6, the frame-to-frame transform is calculated by us-
ing a least square regression method. Here, we try to analyze the eigenvalues of
Eq. 6 to determine whether the equation is ”ill-conditioned”. A rule of thumb is
that the greater the number of eigenvalues near zero, the greater the number of
linear dependencies among the variables. In mathematics, we can use a measure
called condition number, which is the ratio of the largest to the smallest eigen-
value, to detect the degeneration. A high condition number indicates the presence
of collinearity. A low condition number indicates near perfect collinearity. The
guidelines for assessing condition number are shown in Table 1.

We use the above condition number to measurement the degeneration degree
of depth image based odometry estimation method. When severe degeneration
happens, we incorporate RGB information to estimate the frame to frame motion.

3) Dense Visual Odometry from Color Images The dense visual odome-
try method [20] is used to estimate the frame-to-frame motion when degeneration
happens in the depth based method described in Section III.A. In contrast to sparse
feature based methods, dense visual odometry methods want to fully exploit both
the intensity and the depth information provided by RGB-D sensors. Dense visual
odometry uses all color information of the two images and the depth information
of the first image. In our previous study [21], we found that dense visual odom-

7

Table 1: Degree of Collinearity Base on Condition Number

Condition Number (λmax/λmin) Degree of Collinearity

If (CN < 100) Weak

If (100 < CN < 1000) Moderate to Strong

If (CN > 1000) Severe

etry is more robust than sparse feature based visual odometry methods in some
challenging environments.

The brightness change constraint equation relates how the luminance at a 3D
scene point is captured in temporally separated intensity images. A 3D point R is
imaged at pixel position r = (x, y)T in the intensity map It. This point undergoes
a 3D motion ∆R which results in an image motion ∆r between frames t0 and t1
and reprojects with the same intensity at the new image location r +∆r, thus the
brightness change constraint equation can be described as:

I1(r +∆r) = I0(r)

Taking the first-order Taylor expansion of term I1(r +∆r), we can get following
equation:

∇I1(r)∆r = I0(r)− I1(r) (7)

Substituting Eq. 3 and Eq. 5 into Eq. (7), we can get:

∇I1(r)

fxZ 0 −X fx
Z2

0
fy
Z
−Y fy

Z2

 0 Z −Y 1 0 0
−Z 0 X 0 1 0
Y −X 0 0 0 1

ωx

ωy

ωz

vx
vy
vz

 = I0(r)− I1(r)

8

where ∇I1(r) = [Ex,Ey]
Finally, we can write the intensity constraint equation as:

−Exfy − ExXY
fx
Z2
− EyY

2 fy
Z2

Exfx + ExX
2 fx
Z2

+ EyXY
fy
Z2

−ExY
fx
Z

+ EyX
fy
Z

Ex
fx
Z

Ey
fy
Z

−ExX
fx
Z2
− EyY

fy
Z2

ωx

ωy

ωz

vx
vy
vz

 = I0(r)− I1(r) (8)

In practice, the estimation based on Eq. 7 can not recover an accurate estimate
of the camera motion in a single iteration. The reason is that sometimes there is
a fast motion which breaks the small motion assumptions, then the nonlinearity
is sever. Therefore, we should iteratively estimate the motion. To deal with fast
motion problem, this implementation uses a coarse to fine optimization approach,
trying to find the warping function that maximizes the photoconsistency between
two consecutive RGBD frames at different image scales. That is, the optimizer
starts computing a first pose approximation at a low resolution image scale, and
then uses the estimated solution to initialize the optimization at a greater resolution
image scale to refine the solution.

4.1.2 Particle Filtering Based Localization

From Section 4.1.1, we can get a robust odometry estimation, however it will
definitely drift after a long time of running. In order to get an accurate absolute
pose in the environment, we need a localization algorithm to locate the robot in a
given 3D environment.

For 6DoF absolute localization in a given 3D Map, there are two important
things that we should consider. First, what kind of 3D map representation should
we use? Second, what kind of localization algorithm should we use? There are
several different kinds of 3D map representation approaches, such as point cloud,
planes, NDT map [22], 3D octomap [23] and 3D Polygonal Map [24]. Some
of them are raw data based maps, while some of them are feature-based maps.
Here, we select 3D octomap as our map representation since it is compact and

9

can represent many kinds of environments. For localization, a particle filter al-
gorithm (also known as Monte Carlo Localization, MCL) is selected since it is
very robust, which has already verified extensively on ground mobile robots [25].
Thought the MCL has been successfully used on ground mobile robots, 6DoF pose
(x, y, z, ϕ, θ, ψ) which needs to be estimated for MAVs increases the complexity
of the problem. In this paper, we show that by carefully designing the motion and
observation model, MCL can work very well on an embedded computer.

1) Particle Filtering Algorithm Particle Filtering Localization is a Bayes fil-
tering technique which recursively estimates the posterior about the robot’s pose
Xt at time t:

p(Xt|Z1:t, u1:t−1) = η · p(Zt|Xt)·∫
xt−1

p(Xt|Xt−1, ut) · p(Xt−1|Z1:t−1, u1:t−1)dXt−1

Here, η is a normalization constant resulting from Bayes’ rule, u1:t is the sequence
of all motion commands up to time t, and Z1:t is the sequence of all observations.
p(Xt|Xt−1, ut) is called motion model, which means the probability that the robot
ends up in state Xt given it executes the motion command ut in state Xt−1. And,
p(Zt|Xt) is the observation model, which means the likelihood of obtaining ob-
servation Zt given the robot’s current pose is Xt. The particle filter approximates
the belief of the robot with a set of particles:

Xt =
{(
x1t , w

1
t

)
, ..., (xnt , w

n
t)
}

(9)

where, each xit is one pose hypothesis and wi
t is the corresponding weight. The

particle set is updated iteratively by sampling those particles from the motion
model and compute a weight according to the observation model. Particles are
then resampled according to this weight and the process iterates.

2) Motion Model For each subsequent frame, we propagate the previous state
estimate according to the motion model p(Xt|Xt−1, ut) using the odometry com-
puted by the fast direct RGB-D odometry proposed in Section III. For each di-
mension, the propagation equations are of the form:

xk = xk−1 +∆x+ ex,k ex,k ∼ N(0, σ2
x) (10)

where the final term in each equation adds a small amount of normally distributed
noise so as to support unexpected motion. For smooth and continuous motion,

10

usually the above noise model works well. However, during abrupt accelerations
or sharp turning close to the wall (the minimum and maximum measurement range
are around 50cm and 700cm respectively) or in ill-conditioned cases, the odom-
etry algorithm may suffer from periods of total failure. In such cases, we will
propagate the particle set using a noise-driven dynamical model replacing Eq. 10
with

xk = xk−1 + eẋ,k eẋ,k ∼ N(0, σ2
ẋ) (11)

where σẋ is much bigger than σx.
3) Observation Model In this section, we describe how to evaluate the roll,

pitch, height and x, y, yaw in details. Since our MAV works in indoor environ-
ments, most of the time it can see the ground plane. Here, the ground plane is used
in two ways. First, the ground plane is detected to get the roll, pitch and height
measurement to evaluate each particle’s weight. Second, since the ground plane
has no contribution for determining the x,y, yaw, the ground plane is filtered out
when updating the particle’s position weight using range measurement. The final
observation model is:

p(Zt|Xt) = p(dt, z̃t, ϕ̃t, θ̃t|Xt) =

p(dt|Xt) · p(z̃t|Xt) · p(ϕ̃t|Xt) · p(θ̃t|Xt)
(12)

The likelihood formulation is given by:

ρ(d, σ) =
1√
2πσ

exp(− d2

2σ2
) (13)

• Roll,Pitch and Height Likelihood Measurement

In order to detect the ground plane from the point cloud, a RANSAC based method
[26] is used. We assume that the ground plane is the furthest plane to the MAV and
the closest to horizontal. After detecting the ground plane, roll, pitch and height
value can be easily computed from the ground plane equation. Then, the weight
of each particle is updated according to the observed measurement and predicted
measurement by using following equations.

p(z̃t|Xt) = ρ(zt − z̃t, σz)
p(ϕ̃t|Xt) = ρ(ϕt − ϕ̃t, σϕ)

p(θ̃t|Xt) = ρ(θt − θ̃t, σθ)
(14)

where z̃t, ϕ̃t and θ̃t are calculated from the detected ground plane, and σz, σϕ and
σθ are determined by the noise characteristics of the ground plane.

11

• Depth Sensing Likelihood Measurement

In order to evaluate the depth sensing likelihood p(dt|Xt), we use a sparse subset
of beams from the point cloud. From our experiment, we found that how one
selects the subset of beams really influences the robustness and accuracy of the
localization algorithm. In order to efficiently use the points with most constraints,
we try two ways to select points. First, the point cloud is segmented into ground
and non-ground point clouds. Since the ground part has little importance to de-
termine the x, y and yaw of the MAV, only very few points from the ground part
is selected. For the non-ground part, we found that most time in indoor environ-
ments especially in long corridors, there are only few points on the wall are useful
for determining the forward translation. If we use a uniform downsampling, then
we will miss this valuable information. In order to use this information, we select
those points using a Normal Space Sampling method [27]. By doing so, we can
select those points with most constraints.

We assume that the sampled measurements are conditionally independent.
Here, the likelihood of a single depth measurement dt,k depends on the distance d
of the corresponding beam endpoint to the closest obstacle in the map:

p(dt,k|Xt) = ρ(d, σ) =
1√
2πσ

exp(− d2

2σ2
) (15)

where σ is the standard deviation of the sensor noise and d is the distance. Since
a point cloud measurement consists of K beams dt,k, the integration of a full scan
is computed as the product of the each beam likelihood:

p(dt|Xt) =
K∏
k=1

p(dt,k|Xt). (16)

Another issue that should be considered is that depth values of the RGB-D
camera are very noisy when the measurement range is bigger than 4 meters. For
example, when the measurement distance is less than 3 meters, usually the mea-
surement error is less than 2.5cm. However, when the measurement distance is
at 5 meters, the measurement error could be around 7cm. Therefore, the sensor
noise is quite different at different distances. In order to include this character-
istic into our observation model, we use a changing σ which increases with the
measurement distance.

12

4.2 High-frequency Pose Estimation
For onboard planning and control correct and robust estimate of the position and
orientation of the platform is required. The correct estimate of attitude is impera-
tive to keep the platform stable and fly safely. This estimate needs to be updated at
a very high rate so as to generate stabilization commands frequently. On the other
hand position estimate is required to allow platform to be self aware of its place-
ment in the surroundings and hence allow it to plan appropriate paths to maneuver
around obstacles and in corridors.

This can be achieved using various sensors but they provide heterogeneous
information and they need to be fused appropriately to derive the required results.
The state estimation task we currently worked on involves fusion of data coming
from various sensors and asynchronously running state estimation algorithms.

We fuse data from all of these sources on the FCU itself to output high fre-
quency state estimate state Estimation. We run a very high rate attitude estimator
which stabilizes the platform’s angular motion. The heading is generally corrected
using a magnetometer but since such a sensor would fail inside a ship which is a
metal body we use gyroscopes to estimate heading rate and correct the absolute
heading using the onboard localizer. The position estimates are computed using
data from optical flow, visual odometry and inertial sensors. Since the odometry
computed from VO is not smooth we further fuse it with a secodary IMU conected
to Odroid and filter it using a UKF which outputs a smoother, reliable and more
frequent odometry. Fusing data from various sensors allows us to keep track of
our position even when one sensor fails but other has some qualitative estimate.
This estimate is used to update the position of the platform in a coordinate sys-
tem agnostic to the localizer’s coordinate system. The localizer uses this ballpark
idea of current motion to spread the particles for absolute pose estimate. Once
the absolute pose is estimated the localizer maintains a track of motion estimate
generated from the FCU and its own output. feeds it to the estimator running on
FCU. The FCU subsequently converges with the absolute pose estimate.

We have developed a much robust odometry algorithm on FCU. The algorithm
leverages realtime performance of a loosely coupled Kalman Filter. By loosely
coupled we mean that the attitude estimation is generated by the EKF running
onboard which is then used by the Kalman filter to estimate the odometry. The
new filter gets data from the various sensors in sensor centric frames and then
transforms them to NED frame. Now that all the information is in one single frame
and since there are no angular corrections required anymore the filter becomes a
linear problem easily solved using a Kalman Filter [28]

13

A linear system is of type:

xt = Atxt−1 +Btut + ϵt (17)

Here xt and xt−1 are state vectors, and ut is the control vector at time t. Both of
these vectors are vertical vectors but we do not use ut. xt is of the following form

xt = (x y z ẋ ẏ ż ẍ ÿ z̈) (18)

At and Bt are matrices but since we do not use ut, Bt is also omitted. At is a
square matrix of size n × n, where n is the dimension of the state vector xt, i.e.
9 because we use a 9DOF state. Generally Bt is of size n×m, with m being the
dimension of the control vector ut. By multiplying the state and control vector
with the matrices At and Bt, respectively, the state transition function becomes
linear in its arguments. Thus, Kalman filters assume linear system dynamics.
The random variable ϵt in Eq. 17 is a Gaussian random vector that models the
randomness in the state transition. It is of the same dimension as the state vector.
Its mean is zero and its covariance will be denoted Rt.

Algorithm Kalman Filter(xt−1,Σt−1, xt, zt)
1. xt = Atxt−1 +Btut
2. Σt = AtΣt−1A

T
t +Rt

3. Kt = ΣtC
T
t (CtΣtC

T
t +Qt)

−1

4. xt = xt +Kt(zt − Ctut)
5. Σt = (I −KtCt)Σt

6. return xt,Σt

Kalman filters represent the belief at time t by the mean xt and the covariance
Σt. K is called the Kalman Gain.

Kalman Filter(KF) takes input from the following:

1. EKF: Provides the current attitude or orientation of the vehicle. EKF es-
timates the roll, pitch and yaw/heading using the IMU on FCU. Heading
is frequently corrected by Global Pose estimator so as to align the vehicle
heading with absolute heading.

2. Laser Altimeter: Provides the altitude above ground level(AGL) informa-
tion.

14

3. PX4Flow: Provides velocities in lateral direction in vehicle frame. These
velocities are projected in Global frame or NED using the attitude estimate
from EKF. This helps in linearising the measurements used in the KF. This
sensor also provides Sonar data which also helps in determining the AGL.

4. UKF: It provides velocities estimated by the UKF running on computer.
These are also projected in NED frame as explained above.

5. Global Pose Estimator: Provides absolute position and heading of the plat-
form.

Given all the above inputs we construct a measurement vectorzt as:

zt =

xglobalpose
yglobalpose
zopticalflow
zlaser
ẋvisualodomtery

ẏvisualodomtery

żvisualodomtery

ẋopticalflow
ẏopticalflow
ẍimu

ÿimu

z̈imu

(19)

All the measurements in Eq. 19 are in NED or the defined global frame.
We included a laser ranger in addition to the sonar to estimate reliable altitude

above ground. The motivation was to counter the risk of noisy output from Sonar
in congested corridors. Also we wanted to eliminate usage of barometer. Barom-
eter is highly sensitive to pressure changes and in indoor scenarios that can result
in poor altitude hold performance. In a ship with varying temperature profiles due
to fire this is definitely expected. We sought to use other sensors for information
regarding height.

5 Motion Planning
Online motion planning is needed to keep MAV safe by quickly avoiding the
obstacles, which are represented by an online 3D occupancy grid [12]. Local goal

15

points for planning are specified by a human or a high level mission planner. Here,
we focus on local motion planning to generate collision-free trajectories, which
is divided into two steps: path planning to generate optimal waypoints and spline
fitting to generate optimal polynomial trajectories through waypoints.

5.1 Path Planning
We first search an optimal path, containing a series of safe waypoints to avoid
the obstacles. Each waypoint contains 4 DOF {x, y, z, ψ(yaw)}, namely the flat
output space of quadrotor [13]. Let the path be ξ : [0, 1] 7→ R4 mapping from
time to 4 DOF such that:

min
ξ

J = w1fobst(ξ) + w2fsmooth(ξ) + fgoal(ξ)

s.t. ξ(0) = ξ0
(20)

where w1, w2 are the weighting parameters.
fobst(ξ) is the obstacle cost function as defined in [29]:

fobst(ξ) =

∫ 1

0

cobs(ξ(t))∥
d

dt
ξ(t)∥dt (21)

where cobs(ξ(t)) is cobs = ∥max(0, dmax − d(ξ(t))∥2. dmax is the maximum dis-
tance upon which obstacle cost is available and d(ξ(t) is distance to obstacles.

fsmooth(ξ) measures the smoothness of the path and penalizes the high veloci-
ties:

fsmooth(ξ) =
1

2

∫ 1

0

∥ d
dt
ξ(t)∥2dt (22)

fgoal(ξ) is the cost-to-go heuristic measuring path endpoint distance to local
goal point ξg:

fgoal(ξ) = ∥ξ(1)− ξg∥2 (23)

Receding horizon control (RHC) is a common way to solve the problem in Eq.
20 due to easy implementation. It directly chooses the best path among an offline
library [30]. But RHC is only optimal within the library, and it usually needs
large amounts of paths so as to get a high quality path which is time consuming to
check. So we combine RHC with path optimization CHOMP [29]. RHC serves
to provide a good initial guess and CHOMP further optimizes it. The path library
S contains 27 specifically designed paths shown in Fig. 3.

16

Figure 3: Initial path library. All the paths start at (0,0). The library is manually
designed for the corridor environment where obstacles usually lie on two sides.
It includes straight line, turning arcs with different curvatures and lane changing
curves with parallel ending direction, corresponding to the three main flight modes
in the corridor.

We first align the offline paths with current pose then the best path ξ∗ =
argminξ∈S J(ξ) is selected as the initial guess and optimized through CHOMP.
An optimization example during turning is shown in Fig. 4, where the gradient
pushes the path away from obstacles. Note that the end point is freed for opti-
mization, different from standard CHOMP algorithm because our method is only
planning within a horizon. A short horizon makes the optimization faster and
more reactive.

The average cost per iteration of J in Eq. 20 during turning is shown in Fig.
5.

5.2 Spline Fitting
After getting path waypoints ξ0, ...ξn, we need to fit a continuous spline with time
profiler through them. The polynomial spline allows us to analytically compute
feedforward control input for quadrotor [13], which guarantees exponential track-
ing stability of the controller while waypoint following or steering angle methods
cannot.

Since snap, 4th order derivative (wrt. time) of spline, is proportional to control
input of quadrotor, it needs to be continuous and minimized. We parameterize the

17

Figure 4: Path optimization in turning. The color grid represents the distance
map, computed from online 3D occupancy map [12]. The green curve represents
the initial best path, blue curves are the paths during optimization based on the
gradient (yellow). The final optimized path is in red.

Figure 5: Totoal cost changes with each optimization iteration.

spline ξ(t) as 5 segments of 6th order polynomials to ensure continuity of up to
4th derivative through the whole trajectory. The kth segment 1 ≤ k ≤ 5 of the
trajectory is expressed as:

ξ(t) =
6∑

i=0

pikt
i, tk−1 ≤ t < tk (24)

18

5.2.1 Minimize snap

The integration of snap to be minimized is defined as:

fsnap(ξ) =

∫ tn

t0

||d
4ξ(t)

dt4
||2 (25)

There are two kinds of contraints of optimization. (1) The equality constraint
of optimization are imposed on the endpoints of each segment, including passing
through each waypoint and keeping derivative continuity. (2) The inequality con-
straint includes within the maximum velocity and acceleration limits. In order to
get an analytical solution, we first just consider equality constraints and assume
time allocation of each segment is set based on a constant velocity model.

Let p ∈ R35×1 be the polynomial coefficients vector of one flat output, then
quadratic programming problem is formulated:

min
p

pTHp s.t. Ap = b (26)

Where H is the integration of snap square so it is a positive semidefinite matrix.
A closed form solution is found using Lagrange multipliers:

p = H−1AT (AH−1AT)−1b (27)

H matrix is sometimes ill-conditioned in practice so a regularization term εI is
added to it to deal with the singularity problem:

H ← H + εI (28)

where I is identity matrix, ε is a small positive number, here it is set to be 0.001.
This Tikhonov regularization [31] provides an approximation to matrix inversion.

To deal with the inequality constraint, instead of time-consuming optimization
through iterations, we check the inequality constraint after getting the polynomials
from Equ. 27 and if it doesn’t satisfy, we enlarge the time duration for the whole
trajectory then solve Equ. 27 again. In practice, since our vehicle flies at low
speed, we usually don’t come to this step. A better method is to optimize the time
allocation as follows.

5.2.2 Optimize time

Until this point, the time allocation for each segment is specified based on constant
velocity model but actually we can optimize them to get smaller snap and better

19

Figure 6: Minimum snap trajectory optimization. All the trajectories pass through
the same waypoints but with different time setpoints. Blue curve is the initial
trajectory of raw time set points. Red curve is the optimized trajectory.

satisfy inequality constraint. So we jointly optimize w3fsnap + ftime. But there
is no analytical solution to it. Levenberg-Marquardt method [32] is adopted to
optimize the time allocation t = [∆t1,∆t2, ...,∆t5] through iterations based on
the combined cost function:

f(t) = w3fsnap + ftime = w3p(t)
TH(t)p(t) +

5∑
i=1

∆ti (29)

Where p(t) is computed using Eq. 27.
We first compute Jacobian J numerically, then augment cost as F (t) = f(t)2,

update equation of each iteration step is:

(JTJ + λ(diag(JTJ)))δ = JT (−f(t))
t← t+ δ

(30)

An optimization example of a minimum snap trajectory is shown in Fig. 6.
The optimized trajectory in red is much smoother than initial trajectory in blue.
Total cost f(t) iteration is shown in Fig. 7.

We still need to check the inequality constraint after getting the optimized
polynomials and time allocation from Eq. 29 and if it doesn’t satisfy, we just
need to increase the weight w4 for snap cost, which tends to enlarge the total time
duration, then optimize it again.

20

Figure 7: Cost iterations of snap cost plus time cost in during time optimization.

Figure 8: Control diagram of quadrotor

6 Control
A hierarchical control approach in Fig .8 is implemented to track the trajectory
output from motion planning. It is implemented based on the differential flatness
property of quadrotor [13], which is proved to be exponential stable. It is com-
posed of outer position control running at 100Hz and inner attitude control running
at 250Hz. Position controller includes feedforward term analytically computed
from the flat outputs splines x, y, z, ψ(yaw) mentioned in Section 5.2 and PID
feedback term. It also computes the desired attitude ϕ(roll), θ(pitch), ψ(yaw),
which will be stabilized by attitude controller using PID feedback.

6.1 Trajectory Controller
To safely maneuver the platform in flight we should follow smooth trajectories.
A controller has been developed which can take smooth polynomial splines as

21

input and follow them using thrust, velocity and position control. The splines are
generated onboard and the FCU does the control part. These trajectories are sent
referenced in time and the FCU does appropriate concatenation of the fragments
to follow one trajectory after the other continuously. FCU does the task of asking
for a plan and replan as it follows the splines.

A spline provides a polynomial each for x, y, z and heading. The polynomial
is a function of time so for each time step the FCU can sample the new setpoint
for position, velocity and thrust. Equations (31,32,33) show how the setpoints are
obtained from a spline on x axis and similarly on others.

xt = fx(t) (31)

ẋt =
dfx(t)

dt
(32)

ẍt =
d2fx(t)

dt2
(33)

The obtained ẍ is used to compute feedforward thrusts which is directly ap-
plied to the motors and a feedback controller monitors the current position and
velocities as estimated by the state estimation filter running on FCU to achieve
the desired setpoints as shown in figure. We use P only controller for position
control and PID controller for velocity tracking.

6.2 Autonomous Takeoff and Landing
We use the velocity controller to do fully autonomous take offs and landings. We
can initiate auto take off and do position hold once reached the desired altitude.
Similarly the multirotor can be commanded to do auto landing at the commanded
position. This is achieved by setting the desired velocity setpoint along vertical
axis to a fixed velocity and the velocity controller makes the vehicle to climb in
altitude till the desired altitude is reached. Also while the vehicle is climbing
the controller can also maintain the lateral position to allow takeoff and landing
around a fixed spot.

7 Smoke and Fire Detection
A major aspect of this project was to detect and locate fire or smoke and alert
the emergency response team based on this. This involved detecting fire using

22

Figure 9: A colorized image output from FLIR thermal camera (Wood Fire).

onboard sensors and then determining its location using the vehicle’s estimated
pose inside the ship.

7.1 Fire Detection
We use a lightweight FLIR-tau thermal camera to measure the temperature of the
environment. This provides us with a 720x480 pixel image having pixel intensity
corresponding to the temperature at the pixel location as shown in fig(9). We can
segment the appropriate range of temperature for fire, people etc. based on this
image. Anything over 100◦C is considered to have a high probability of being fire
or being situated very close to the fire (eg. fig 10). Similarly segmented blobs with
temperature close to 30◦C is considered to belong to a human being. As we are
using a thermal camera, its possible to detect a fire even in complete dark/smoky
environments making the emergency alert system independent of ambient light
conditions.

7.2 Smoke Detection
Smoke detection was based on texture analysis of the color images received from
the RGB-D camera onboard.The current approach is to detect the color homo-

23

Figure 10: Fire segmentation based on temperature (Oil and Wood Fire). The
detected fire sources are outlined in green.

geneity in the images. So the two deciding factors for smoke detection are the
contrast and average intensity of the image. Low contrast images represent a
higher probability of smoke in the environment. The average intensity or for this
purpose, the overall darkness of the image provides the counter argument. Lack
of illumination makes smoke detection imprecise due to lowering of contrast in
the image. Taking both of the above factors into account gives an empirical idea
of the smoke present in the environment.

During the field demonstration at Shadwell in Nov 2014, the fire/smoke de-
tection was not used as a guiding process. It was a completely open loop sys-
tem which would output the locations of fire seen by the camera without actively
searching for it. The next step is to combine fire detection with planning by trying
to get to areas with increasing temperature gradient.

8 Real-world Experiments
In this section, we demonstrate each module’s performance from state estimation,
motion planning to control.

24

8.1 Real-time Pose Estimation Experiments
We test our localization algorithm in different kinds of environments. In order to
realize localization in a given 3D map, we need to create the global map. In our
system, LOAM [33] is used to create the 3D map. The LOAM algorithm can build
very accurate point cloud map by using a rotating 2D laser. In all the experiments,
we set our map resolution to 4cm. We test the odometry and localization algo-
rithms in different kinds of environment by carrying or semi-autonomously fly-
ing our customized MAV. Our customized quadrotor is equipped with a forward-
looking Asus Xtion Pro Live RGB-D camera and Odroid XU embedded computer.
The RGB-D camera is used for odometry estimation and localization. We develop
our localization system using ROS Indigo, PCL 1.7, OpenCV 2.4 and C++ lan-
guage.

8.1.1 Fast Direct RGB-D Odometry

Since the odometry performance influences the localization significantly, we test
our RGB-D odometry method with other state-of-the-art method to shown its ex-
cellent performance. Here, we compared the proposed RGB-D odometry method
to Fovis, DVO and FastICP. We test them both in normal indoor environments and
visual-degraded environments. We show that our odometry method totally out-
perform state-of-the-art RGB-D odometry methods in dark environment and can
achieve similar performance in normal environment. The first experiment was in
relative dark and smoky environments, which is the actual environment our MAV
will operate in. The second experiments was in long corridors, which is very chal-
lenge for both visual or depth based odometry estimation methods since there are
only very few visual and geometric features. We evaluate our odometry estimation
pipeline wth RGB-D data recorded two indoor environments. The experimental
results are shown in Fig.1. The camera is moved along a loop, and placed back
at its starting point. Images are streamed at VGA resolution. We use the loop-
closing error to evaluate the performance of each method. The loop-closing error
and runtime performance is the following table.

8.1.2 Illustrative Localization Examples

In this part, the localization algorithm is tested in visual degraded environment and
natural office environment. In the degraded visual environments, some locations

25

Table 2: Loop-closing Error and Runtime Performance
Method Test1 Test2 Mean Runtime(ms)
Fovis failed 6.2% 20.5
DVO 17.09% 2.60% 51.2

FastICP 7.03% 5.6% 50.3
Our 3.89% 1.50% 10.9

−8 −6 −4 −2 0 2
−2

0

2

4

6

8

10

12

X(m)

Y
(m

)

Fovis

DVO

FastICP

Our

X(m)

Y
(m

)

−10 −8 −6 −4 −2 0 2

0

2

4

6

8

10

12

Fovis

DVO

FastICP

Our

Figure 11: Odometry evaluation in different environments: The left plot shows
estimated trajectory in an low illumination environment. The right plot shows the
estimated trajectory in a challenging long corridor environment.

are very dark and some locations have very few visual or geometric features. In the
natural office environment, there are some long clear corridors which pose great
challenge for odomtry estimation and localization. We show that our localization
system can work well in those environments. In all experiments, the RGB-D
images are streamed at frame rate of 15Hz with resolution of 320 × 240

1) Degraded Visual Environment We test our localization algorithm in two
degraded visual environments. In both two experiments, the illumination is very
low. The difference is that one is a cluttered and narrow environment, while the
other one is more structured but almost totally dark.

26

The first experiment is in the narrow and cluttered environment, which has
a size of 16m × 25.6m × 4.04m. In this environments, most of the time the
RGB images are very dark as shown in Fig. 12, while the depth images are still
very good. However, there are some locations that the robot can only see one flat
wall in front of it. For example, when the robot turns left at corner (a), since the
corridor is very narrow (less than 1m), the robot can only see the wall in front of
it. Another example is that when the robot is in the spacious room (b), the depth
camera can only see the ground plane and cannot see the wall in front of it. In both
scenarios, if just depth images are used for odometry estimation, it will suffer from
the degeneration problem. In our system, we always monitor the degeneration
status, when the degeneration is severe, RGB information is considered to estimate
the odometry. By doing so, our odometry method will not only avoid suffering
from a severe degeneration problem, but also has a very fast speed and low CPU
usage. The localization result in this environment is shown in Fig. 12.

The second experiment is in a structured but almost completely dark environ-
ment, which has size of 11.8m × 19.2m × 2.8m. In this environment, we cannot
get any useful information from RGB images. Therefore, we can only use depth
images for odometry estimation and localization. There are also some challenging
locations where RGB-D camera can only see the ground plane, one wall or two
parallel walls, or even detect nothing when it is very close to the wall that depth
image returns nothing because the minimum measurement range of the RGB-D
camera is around 0.5 meters. In such situations, the depth-based odometry will
also suffer from the degeneration problem. In this experiment, we also detect the
degeneration status. If the degeneration is severe, the odometry estimation method
will not output motion estimation results, but a failure indicator. Then, our local-
ization algorithm will use the noise-driven motion model to propagate particle set.
In our experiment, we find that if the odometry failure is relatively short in dura-
tion (less than 3 seconds), it is possible for the localization algorithm to overcome
this failure entirely. The localization result in this experiment is shown in Fig. 13.

2) Typical Office Environment
In this experiment, we want to show that our localization system not only

works in degraded visual environments, but also works well in normal challeng-
ing environments. The test environment is a typical office environment with long
clear corridors, which has a size of 64.2m × 21.2m × 3.9m. In this environ-
ment, the illumination is very good. However, there are also several challenges in
this environment for odometry estimation and localization using RGB-D camreas.
First, the corridors are very clear. Therefore, there are only few visual features

27

Figure 12: Localization in degraded visual environment: Pink: Odometry, Red:
Localization. The bottom pictures show some snapshots of the environment. The
top figure shows the odometry, localization results with the 3D octomap. Note
that ceiling and ground are cropped for visualization purpose (same in the later
figures).

and geometric features in the corridors, which poses big challenges for odome-
try estimation and localization. Second, the corridors are very narrow, therefore
when the robot turns from one corridor to another corridor, the RGB-D camera
can only see a part of the wall. Therefore, the localization system must be robust
enough, otherwise it will easily fail around each corner. The third challenge is
that the maximum measurement range of RGB-D camera is about 6∼7m and the

28

Figure 13: Localization in completely dark environment: Pink: Odometry, Red:
Localization. The top figures shows the odometry, localization results with the 3D
octomap. The bottom pictures show some snapshots of the environment.

measurement noise increases along with the distance. However, in this environ-
ment there are several corridors whose length are longer than 10 meters. Both
the odometry estimation method and localization method should find useful con-
straints for estimation. In our experiment, we found our localization system can
robustly locate the robot in the map. Fig. 14 shows the localization results.

29

Figure 14: Localization in typical office environment: Pink: Odometry, Red: Lo-
calization. The top pictures show some snapshots of the environment. The bottom
figure shows the odometry, localization results with the 3D octomap.

8.1.3 Localization Accuracy

In this part, we compare the localization accuracy with ground truth from LOAM
mapping system. We attached an Xtion RGB-D camera to the LOAM system
and recorded the datasets for offline comparison. Since the estimation accuracy
of LOAM system is very high, we could consider its trajectory as ground truth.
We test our localization algorithm in two environments. One is a general office
environment, where there are many chairs, long tables, long corridors and a lot of
office furnitures. This environment is much easier for odometry estimation and
localization, since there are lots of visual and geometric features. The other one is
in a long tunnel, which is very difficult for odometry estimation and localization
using a RGB-D camera since it is very clear. For both experiments, the map res-
olution is 4cm and the particle number is set to 500. The localization algorithm
updates the pose when the robot moves every 10cm or turns 0.1 radians. The ex-
perimental results are shown in Table. 3. From the experimental results, we also

30

can see that localization accuracy in office environment is better than in long tun-
nel environment. In long tunnel environment, the biggest error is in the x direction
since sometimes there are not enough constraints to determine its position. But
our localization algorithm can quickly converge to the true position once there are
enough constraints available. The accuracy of our localization algorithm is better
than others work [24] and [34]. In their work, their mean localization error is
about 40cm, while ours is about 17cm (Note that in our localization algorithm,
the observation update is executed only after the robot moves every 10cm or turns
0.1 radians). It should be noted that the localization accuracy changes in different
environments or moving at different speeds because it influences the accuracy of
odometry estimation dramatically.

Figure 15: Accuracy comparison with ground truth in two different kind of envi-
ronments: Pink: RGB-D Odometry Red: Localization Blue: Ground truth.

Table 3: Localization Accuracy for Datasets Shown in Fig.15
Environments Distance RSME Mean Std

Office 47.2m 0.161m 0.152m 0.056m
Tunnel 46.1m 0.235m 0.194m 0.107m

8.1.4 Runtime Performance Evaluation

Runtime performance is very important for MAVs since the onboard computation
abilities are limited. In addition to odometry and localization, it is also necessary

31

to run path planning and obstacle avoidance for completing a given task. In our
experiment, we test the runtime performance of our system on the Odroid XU
system, which has two CPUs. One is a 1.6GHz, quad core CPU. The other one
is a Cortex−A7 quad core CPU. Each core has one thread. Our odometry and
localization algorithms are both single-threaded programs. Therefore, each algo-
rithm takes one core. In our experiment, the RGB-D data are all recorded at frame
rate 15Hz with QVGA resolution. For the experiment in Fig. 12, the runtime
performance is shown in Table. 8. In our experiment, we use 300 particles. Our
algorithm can run up to 30Hz on the embedded system. When it is running at
15Hz, the CPU usage is very low which leaves many computation resources for
path planning and obstacle avoidance.

Table 4: Runtime Performance on an Embedded Computer

Name
Algorithm Runtime

Mean Min Max StdDev

Odometry 30.3ms 5ms 110ms 20.2ms
Localization 65.8ms 45.8ms 97ms 16.5ms
Total CPU Usage 34.5% 30.5% 44% 2.80%

8.2 Planning Experiments
To test motion planning, we need to first provide the two inputs to motion plan-
ning: local goal generated by mission planner and distance map generated by
obstacle mapping. Local goal could also be specified by a human.

8.2.1 Mission Planner

Mission planning serves to provide local goal for local planning, which are about
5m away from each other. It is computed by the following three steps:

(1) Generate 2D grid map from 3D point cloud ship model. Firstly, project all
the 3D points onto 2D grid map. Then count the number of points falling onto
each grid. If it exceeds a threshold, the grid will be considered as occupied. An
example of 3D point cloud and corresponding 2D grid map is shown in Fig .16(a)
and Fig .16(b).

32

(a) (b)

(c) (d)

Figure 16: (a) 3D offline point cloud of an indoor environment (b) 2D grid map
projected from 3D point cloud. Green grids represent the obstacles. (c) Voronoi
diagram shown as red line. It represents the grids farthest away from green obsta-
cles. (d) Final path from start to goal using A* search algorithm.

(2) Build Voronoi diagram of the grid map. Firstly, build a distance map from
the grid map, which stores the distance of each grid to the closest obstacle using
incremental brushfire algorithm. Then find the grid with equal distance to obsta-
cles and put it one the voronoi diagram as as to keep the vehicle most away from
obstacles shown as red lines in Fig .16(c).

(3) Search the optimal path using A* from current location to goal. Smoothing
and collision detection is implemented later to get a feasible and smooth path
shown in Fig .16(d). Then the path is downsampled by about 5m away from each
other to provide local goal for local planning.

Note that though we have the prior map, we cannot directly use it to generate
an offline path because it doesn’t adapt to the unknown obstacles. More seriously,
if there is big state estimation error in dark or smoky environments, blindingly
following offline path can be disastrous to MAV because it has no sense where
the obstacles are. Instead, our online obstacle mapping and local planning can
guarantee the safety.

33

8.2.2 Obstacle Mapping

The corridor our vehicle is flying contains complicated 3D protruding objects such
as lamps, wires and stairs, posing difficulty for obstacle avoidance. So a 3D occu-
pancy map is needed to represent the world. It stores the probability of each grid
being occupied, which is updated using Bayes’ rule according to the range sensor
data from depth camera. If the probability exceeds a threshold, the grid will be
considered as obstacles. An example of occupancy map is shown in Fig .17(a).
Suppose b(m) stores the belief of a grid being occupied, o represents sensor ob-
servation at this grid. Then the update of belief is given by:

b(m|o) = b(m) + k ∗ 20
b(m|ō) = b(m)− k ∗ 5

(34)

The derivation of update rule could be found at [35]. The first equation means
if sensor ray hits the cell, it increases the probability of being obstacles. The
second equation means if ray passes through the cell, probability decreases. The
value of 20 and 5 is tuned through experiments depending on the threshold set
for obstacle state. The improvement over [35] is that we add a scaling number k
between 0 and 1 to represent the quality of sensor observation. It could increase
the accuracy of occupancy estimate and reduce the unnecessary updates due to
bad state estimation. It is determined based on the following two factors:

1) The quality of state estimation. If the state estimation is of high quality,
meaning that the vehicle is very certain about current its position and obstacles
position, k is set close to 1. The quality of estimation is measured by the deter-
minant |Q| of pose covariance matrix Q, computed by the particle distribution in
MCL localization in Section 4.1.2.

2) The distance to the vehicle. If the cell is further away from vehicle, sensor
data is likely to be un-accurate, so k is set small. This is reasonable for Kinect
camera since its reliable range estimation is about 3.5m.

To keep memory and computation efficient, the occupancy map keeps a fixed
dimension and moves along with the vehicle. The obstacle grid in occupancy map
is then used to compute 3D distance map, which stores the distance of each grid to
its closest obstacles shown in Fig .17(b). It is computed by the incremental brush-
fire algorithm [12]. Distance map is a key element required for local planning to
avoid obstacles.

34

(a) (b)

Figure 17: (a) Occupancy map. Four spheres are the four rotors of quadrotor. Red
cubes represent obstacles. Hollow area presents free space. Grey cubes means the
unknown area. (b) Distance map. The redder cube, the more closer to obstacles.

Figure 18: An example trajectory calculated using path optimization with reced-
ing horizon control through a simulated shipboard environment.

8.2.3 Local Planner

Real point cloud data is used to test motion planning. A depth camera is sim-
ulated by raycasting, then mission planner generates a series of local goals and
obstacle mapping provides the occupancy map and distance map. Local planning
keeps replanning to reach them while avoiding obstacles. The pose history during
simulation is shown as red curve in Fig. 18.

Running performance on Odroid and quality of trajectory is evaluated in Table
. 5. The proposed algorithm can run at 30Hz. Obstacle detection and motion
planing takes about 10% on the onboard CPU. Our mean obstacle distance is 0.47
m which lies nearly in the center of a 1 m wide corridor. The closest distance is
0.18 m happening at the door. From the prior point cloud, the door is about 0.44
m wide so the vehicle is nearly in the center of door.

To demonstrate the performance, we make comparison by replacing our path

35

Table 5: Motion planning simulation performance on Embedded Computer
Name Mean Min Max Std

CPU usage 10.96% 7.25% 15.62% 1.68%
Planning time 29.2 ms 15.2 ms 37.8 ms 6.7 ms

Obstacle distance 0.47 m 0.18 m 0.66 m 0.07 m

planner with RRT* [36] and keeping other modules such as spline fitting and ob-
stacle mapping as the same. RRT* cost function is set as path length and obstacle
cost. To bias RRT*, the local goal point provided by global planner is set close to
the start position (about 2 m) to greatly decrease the search space. The compar-
ison is implemented on the embedded computer and the result is shown in Table
.6. RRT* needs more time than our method to stably generate a valid path. It is
closer to obstacles and has higher snap cost compared to our method. The reason
our method outperforms RRT* is mostly due to the fact that corridor is a struc-
tured environment where obstacles usually lie on two sides so the provided path
set is easy to get a smooth and safe path while RRT* needs many random samples
in order to get a valid path shown in Fig. 19.

Table 6: Comparison with RRT*. Dist stands for vehicle distance to the obstacle.
Opti means CHOMP optimization.

Methods Time(ms) Mean dist(m) Min dist Mean snap(m/s4) Max snap

RRT* 70 0.46 0.16 1.46 14.02
RRT*+Opti 94 0.46 0.17 0.79 4.16

Our 30 0.47 0.18 0.58 2.50

8.3 Control Experiments
In this experiment, the robot is programmed to continuously fly through a circle
pattern, with 1m radius and 0.32m/s average speed. State estimation only comes
from flight controller unit using inertial sensors and optical flow sensor. RGB-
D Visual odometry and localization is not employed in this control test. The
command polynomial trajectory is continuously generated onboard based on the
predicted pose of quadrotor. It not only needs to follow position x, y, z but also

36

(a) (b)

Figure 19: (a) Our path library planning. The grey cubes are the occupancy grid.
Colorful square is the distance map. Yellow curves are the offline path set and the
best one is shown in red. (b) RRT* planning. Yellow segments shows the RRT
tree. The best searched path is shown in red.

heading ψ(yaw), which is tangential to the circle. The tracking result is shown in
Fig .20. Evaluation of each DOF tracking is shown in Fig. 21. The mean tracking
error from state estimation is 0.13m with standard deviation 0.05m.

8.4 Final Demo Experiments
8.4.1 Mission Description

For the demo, the mission of the MAV is to search in a partial-known environment
and find the fire burning places and create the temperature map of the whole envi-
ronment. To accomplish this goal, our robot uses onboard RGB-D camera (only
depth images are used) for autonomous navigation and FLIR infrared camera to
detect the temperature of environment and mark the high temperature areas.

We first use a hand-held mapping device to create the global map of the whole
demo area. This global map is used for both localization and global planning.
The global map created from the mapping device is converted to octomap and 3D
Euclidean distance map for global localization. The resolution is 4cm. Fig.22
shows the created point cloud map. Our goal is to launch the MAV around ”start
point”, then let the robot autonomously explore the 1 m wide and 20 m long

37

Figure 20: Circular flight control test

Figure 21: Tracking result of x, y, z, yaw

38

corridor, go through the narrow doorway and go to the ”end point”. At the same
time, the robot records infrared images and detects the fire and high temperature
areas and puts markers on the map for rescuers to see where the fire is.

start end
Doorway

Figure 22: Global Point Cloud Map: The goal is to launch the MAV around ”start
point”, then let the robot autonomously explore the long corridor, go through the
narrow doorway and go to the end point. At the same time, the robot records
infrared images and detects the fire and high temperature areas and puts markers
on the map for rescuers to see where the fire is.

We did three kinds of experiments to test our system. And for each kind
of experiment, we did at least 4 successful experiments. We simulated the fire
fighting scenario, where some places have good illumination, while some places
are fully dark and some places are filled with smoke and fire. Those environments
pose different challenges for our robot. We want to test the performance of our
system in those different kinds of practical environments.

8.4.2 Experimental Results of Autonomous Flights

We performed totally 20 experiments of autonomous flights in this demo area with
different environmental conditions.

1) Test1: With illumination In test1, all the lights in the hallway are on,
which is a little bit better for the optical flow estimation. However, in our local-

39

ization system we don’t use any RGB information, therefore it doesn’t influence
the localization performance too much. Actually with all lights on, it is not good
for the depth camera, since there are no depth values return from those bright
lamps. The reason is that our depth camera is based on structured lights. Fig.
23 shows the experiment results, our robot can realize reliable localization in this
test area. As you can see from the Fig2, the visual odometry drifted to the out-
side of the map, while localization is still good. It should be noted that the robot
trajectory is not smooth which not means bad localization results. Actually, our
robot was well localized in this test. One reason why the robot is not very stable is
that the hallway is very narrow, therefore the airflow really influenced the control
performance of the robot. Besides, there are some small objects and thin lines
on the wall, every time the robot hit those objects the trajectory of the robot was
changed.

Figure 23: Visual odometry and localization results in normal environment dur-
ing autonomous flights (Yellow arrows are visual odometry and red trajectory is
localization result)

2) Test2: With no illumination For test2, we turned off all the lights in the
test area and wanted to test the ability of autonomous navigation in totally dark
environment. The reason of doing this is that nowadays most navigation system
of MAVs are using visual information which couldn’t work in dark environment.
While our method uses depth information only, which not only work in envi-
ronment with abundant illumination but also work in environments where are no
visual features. In this experiment, our robot was well localized and success-

40

fully went through the very narrow doorway for several times as shown in Fig.24.
Experimental results show that our system are work very well in fully dark envi-
ronments.

Figure 24: Visual odometry and localization results in dark environment during
autonomous flights (Yellow arrows are visual odometry and red trajectory is lo-
calization result)

3) Test3: With smoke In this test, we want to test the ability of our navigation
system in smoky environments. We did the test in the same area but filled with
wood fire smoke. The smoke in this test is not very dense, we found that even
the performance of the depth camera is reduced dramatically, our system can still
work. As you can see from Fig.25, the drift of the visual odometry is much bigger
than previous tests(especially the drift in Z direction). However, the localization
system still worked very well (As you can see the robot went back to the start
point). However, when the smoke is very dense, then the depth camera almost
dosen’t return any useful depth information, which will make the whole system
fail. Therefore, navigation in dense smoky environments is still an open problem.

Discussion Some images of the flight are shown in Fig. 26. The result of 20
runs is shown in Table 7. Failure cases are usually due to quadrotors being slightly
rotated and stuck in the narrow door. It is difficult to cross the door in smoky
environment because the depth image is corrupted by smoke making difficult for
state estimation, obstacle detection and trajectory tracking difficult. Experimental
results show that our robot can work very well in all the conditions except when

41

Figure 25: Visual odometry and localization results in smoky environment dur-
ing autonomous flights (Yellow arrows are visual odometry and red trajectory is
localization result)

the environment is filled with very dense smoke.

(a) (b)

Figure 26: Experiment demonstration. Left: turning. Right: crossing door.

Runtime performance is also very important for MAVs since the onboard com-
putation abilities are limited. We record the performance including CPU usages
of some key algorithms on the Odroid system shown in Table. 8. We use 300 par-
ticles for MCL localization. When all the system modules are running, the total
CPU usage is between 60 ∼ 65%. The experiment result shows our navigation
system can run in real-time by only using the onboard computation resources.

The video of a field experiment with fire detection at Shadwell in Nov 2014
can be found at https://www.youtube.com/watch?v=g3dWQCECwlY.

42

Environment Total run Succeed Rate
Normal 4 4 100%

Dark 7 5 71.4%
Smoky 9 5 55.5 %

Table 7: Results of experiments.

Table 8: Runtime Performance on the Embedded Computer

Name
Algorithm Runtime

Mean Min Max StdDev

Odometry 30.3ms 5ms 110ms 20.2ms
Localization 65.8ms 45.8ms 97ms 16.5ms
Local Planning 29.2 ms 15.2 ms 37.8 ms 6.7 ms

8.4.3 Lessons Learned

During the experiments, we did several modifications to make the system more
robust and accurate. We found that if we didn’t make those modifications the
whole system didn’t work very well.

1) Depth Camera Calibration The depth value from the Xtion Pro Live depth
camera is very noisy. And the noise increases with the measurement distance. For
example, when the measurement distance is about 1 3 meters, the noise is just
around 2 3cm. But when the measurement distance is about 5 meters, then the
noise is around 7 cm. Another problem is that the depth camera always under-
estimates the actual distance. If we didnt do the depth calibration, then the close
points from the point cloud are correct, but the far points are severely under-
estimated. That means, far objects in the point cloud cannot be aligned to the
global map correctly, which often made the whole localization system fail.

2) Adding UKF Filtering Our visual odometry outputs the transform at 15Hz,
and this estimation is fed into FCUs EKF filter to fuse with other data for pose
control. We found that if we just use the visual odometry, it seems that it is
not fast enough for EKF filtering. The latency sometime makes the filtering not
smooth. Therefore, we mounted a Micro-Strain IMU, then used UKF to fuse the
odometry and IMU information and fed the fused result to the FCU. By doing so,
our system became much more stable then before. The possible reasons are: first,
by fusing IMU and visual odometry, we can get a smoother odometry estimation;

43

second, the latency is dramatically reduced when using the UKF output since our
UKF runs at 50Hz.

9 Conclusion
In this paper we have shown the feasibility of an autonomous fire detection MAV
system in a GPS denied environment with tough visibility conditions. This was
achieved without the need of any additional infrastructure on the ship reducing
the installation and maintenance costs of the system. We achieved autonomous
flight with fully online and onboard control and state estimation in complete dark
through 1m wide passages while crossing doorways with only 8cm clearance. We
demonstrated 10 consecutive runs where the vehicle crossed a lit, completely dark,
smoky passageway respectively and ended by detecting wood and diesel fires.

The next challenges are to increase to robustness and safety of the vehicle
while increasing flight time. This will involve improvements in both software and
hardware. The current size of vehicle is a little large, resulting in a very tight fit
through the ship doorways. In future, we intend to move from a quadrotor design
to a single/coaxial ducted rotor design to decrease size but increase flight time
efficiency. Currently, our sensor suite loses reliability in dense smoke conditions
leaving the robot inoperable. We plan on adding sensors which extend the range
of environments our robot can successfully navigate and inspect. On the software
side, one important goal is to decrease the dependency on a prior map for state
estimation to make the system more adaptable to changing or damaged environ-
ments. Pursuing exploration and mapping in a damaged environment poses many
interesting research challenges.

44

References
[1] Slawomir Grzonka, Giorgio Grisetti, and Wolfram Burgard. A fully au-

tonomous indoor quadrotor. Robotics, IEEE Transactions on, 28(1):90–100,
2012.

[2] Ivan Dryanovski, Roberto G. Valenti, and Jizhong Xiao. An open-source
navigation system for micro aerial vehicles. Autonomous Robots, 34(3):177–
188, March 2013.

[3] Shaojie Shen, Nathan Michael, and Vijay Kumar. Autonomous multi-floor
indoor navigation with a computationally constrained mav. In Robotics and
automation (ICRA), 2011 IEEE international conference on, pages 20–25.
IEEE, 2011.

[4] Konstantin Schauwecker and Andreas Zell. On-board dual-stereo-vision for
the navigation of an autonomous MAV. J. Intell. Robot. Syst. Theory Appl.,
74:1–16, 2014.

[5] Friedrich Fraundorfer, Lionel Heng, Dominik Honegger, Gim Hee Lee,
Lorenz Meier, Petri Tanskanen, and Marc Pollefeys. Vision-based au-
tonomous mapping and exploration using a quadrotor MAV. In IEEE Int.
Conf. Intell. Robot. Syst., pages 4557–4564, 2012.

[6] Allen D. Wu, Eric N. Johnson, Michael Kaess, Frank Dellaert, and Girish
Chowdhary. Autonomous Flight in GPS-Denied Environments Using
Monocular Vision and Inertial Sensors. J. Aerosp. Inf. Syst., 10:172–186,
2013.

[7] D Scaramuzza, M Achtelik, L Doitsidis, F Fraundorfer, E Kosmatopoulos,
A Martinelli, et al. Vision-controlled micro flying robots: from system de-
sign to autonomous navigation and mapping in gps-denied environments.
pages 26–40, 2014.

[8] Stephan Weiss, Davide Scaramuzza, and Roland Siegwart. Monocular-
slam–based navigation for autonomous micro helicopters in gps-denied en-
vironments. Journal of Field Robotics, 28(6):854–874, 2011.

[9] Gerardo Flores, Shuting Zhou, Rogelio Lozano, and Pedro Castillo. A vi-
sion and gps-based real-time trajectory planning for a mav in unknown and

45

low-sunlight environments. Journal of Intelligent & Robotic Systems, 74(1-
2):59–67, 2014.

[10] AS Huang and Abraham Bachrach. Visual odometry and mapping for au-
tonomous flight using an RGB-D camera. Int. Symp. Robot. Res., pages
1–16, 2011.

[11] Roberto G Valenti, Ivan Dryanovski, Carlos Jaramillo, Daniel Perea Strom,
and Jizhong Xiao. Autonomous quadrotor flight using onboard rgb-d visual
odometry. In Robotics and Automation (ICRA), 2014 IEEE International
Conference on, pages 5233–5238. IEEE, 2014.

[12] Sebastian Scherer, Joern Rehder, Supreeth Achar, Hugh Cover, Andrew
Chambers, Stephen Nuske, and Sanjiv Singh. River mapping from a flying
robot: state estimation, river detection, and obstacle mapping. Autonomous
Robots, 33(1-2):189–214, 2012.

[13] Daniel Mellinger and Vijay Kumar. Minimum snap trajectory generation
and control for quadrotors. In Robotics and Automation (ICRA), 2011 IEEE
International Conference on, pages 2520–2525. IEEE, 2011.

[14] P.J. Besl and H.D. McKay. A method for registration of 3-D shapes. IEEE
Trans. Pattern Anal. Mach. Intell., 14(2):239–256, 1992.

[15] T. Stoyanov, M. Magnusson, H. Andreasson, and A. J. Lilienthal. Fast
and accurate scan registration through minimization of the distance between
compact 3D NDT representations. Int. J. Rob. Res., 31(12):1377–1393,
September 2012.

[16] Kaustubh Pathak, Andreas Birk, Narunas Vaskevicius, and Jann Poppinga.
Fast Registration Based on Noisy Planes With Unknown Correspondences
for 3-D Mapping. IEEE Trans. Robot., 26(3):424–441, June 2010.

[17] Berthold K.P. Horn and John G. Harris. Rigid body motion from range image
sequences. CVGIP Image Underst., 53(1):1–13, January 1991.

[18] P. Henry, M. Krainin, E. Herbst, X. Ren, and D. Fox. RGB-D mapping:
Using Kinect-style depth cameras for dense 3D modeling of indoor environ-
ments. Int. J. Rob. Res., 31(5):647–663, February 2012.

46

[19] Graeme Jones. Accurate and Computationally-inexpensive Recovery of
Ego-Motion using Optical Flow and Range Flow with Extended Tempo-
ral Support. In Procedings of the British Machine Vision Conference 2013,
pages 75.1–75.11. British Machine Vision Association, 2013.

[20] Christian Kerl, Jurgen Sturm, and Daniel Cremers. Robust odometry esti-
mation for RGB-D cameras. In 2013 IEEE Int. Conf. Robot. Autom., pages
3748–3754. IEEE, May 2013.

[21] Zheng Fang and Sebastian Scherer. Experimental Study of Odometry Es-
timation Methods using RGB-D Cameras. 2014 IEEE/RSJ International
Conference on Intelligent Robots and Systems, September 2014.

[22] Shuji Oishi, Yongjin Jeong, Ryo Kurazume, Yumi Iwashita, and Tsutomu
Hasegawa. ND voxel localization using large-scale 3D environmental map
and RGB-D camera. In 2013 IEEE Int. Conf. Robot. Biomimetics, number
December, pages 538–545. IEEE, December 2013.

[23] Daniel Maier, Armin Hornung, and Maren Bennewitz. Real-time navigation
in 3D environments based on depth camera data. In IEEE-RAS International
Conference on Humanoid Robots, pages 692–697, 2012.

[24] Maurice F. Fallon, Hordur Johannsson, and John J. Leonard. Efficient scene
simulation for robust monte carlo localization using an RGB-D camera. In
Proc. - IEEE Int. Conf. Robot. Autom., pages 1663–1670, 2012.

[25] Sebastian Thrun, D Fox, and W Burgard. Monte carlo localization with
mixture proposal distribution. AAAI/IAAI, 2000.

[26] Martin A. Fischler and Robert C. Bolles. Random sample consensus: a
paradigm for model fitting with applications to image analysis and auto-
mated cartography. Commun. ACM, 24(6):381–395, June 1981.

[27] Szymon Rusinkiewicz and Marc Levoy. Efficient variants of the ICP algo-
rithm. In Proc. Third Int. Conf. 3-D Digit. Imaging Model., pages 145–152.
IEEE Comput. Soc, 2001.

[28] Sebastian Thrun, Wolfram Burgard, and Dieter Fox. Probabilistic Robotics
(Intelligent Robotics and Autonomous Agents). The MIT Press, 2005.

47

[29] Nathan Ratliff, Matthew Zucker, J Andrew Bagnell, and Siddhartha Srini-
vasa. Chomp: Gradient optimization techniques for efficient motion plan-
ning. In Robotics and Automation, 2009. ICRA’09. IEEE International Con-
ference on, pages 489–494. IEEE, 2009.

[30] D. Dey, K. Shaurya Shankar, and et al Zeng, S. Vision and learning for de-
liberative monocular cluttered flight. arXiv preprint arXiv:1411.6326, 2014.

[31] Gene H Golub, Per Christian Hansen, and Dianne P O’Leary. Tikhonov
regularization and total least squares. SIAM Journal on Matrix Analysis and
Applications, 21(1):185–194, 1999.

[32] Jorge J Moré. The levenberg-marquardt algorithm: implementation and the-
ory. In Numerical analysis, pages 105–116. Springer, 1978.

[33] Ji Zhang and Sanjiv Singh. LOAM : Lidar Odometry and Mapping in Real-
time. Robotics: Science and Systems Conference (RSS), 2014.

[34] Joydeep Biswas and Manuela Veloso. Depth camera based indoor mobile
robot localization and navigation. In IEEE Int. Conf. Robot. Autom., pages
1697–1702, 2012.

[35] Sebastian Scherer, Sanjiv Singh, Lyle Chamberlain, and Mike Elgersma.
Flying fast and low among obstacles: Methodology and experiments. The
International Journal of Robotics Research, 27(5):549–574, 2008.

[36] Sertac Karaman and Emilio Frazzoli. Incremental sampling-based algo-
rithms for optimal motion planning. arXiv preprint arXiv:1005.0416, 2010.

48

