
Direct Monocular Odometry Using Points and Lines

Shichao Yang, Sebastian Scherer

Abstract— Most visual odometry algorithm for a monocular
camera focuses on points, either by feature matching, or direct
alignment of pixel intensity, while ignoring a common but
important geometry entity: edges. In this paper, we propose an
odometry algorithm that combines points and edges to benefit
from the advantages of both direct and feature based methods.
It works better in texture-less environments and is also more
robust to lighting changes and fast motion by increasing the
convergence basin. We maintain a depth map for the keyframe
then in the tracking part, the camera pose is recovered by
minimizing both the photometric error and geometric error
to the matched edge in a probabilistic framework. In the
mapping part, edge is used to speed up and increase stereo
matching accuracy. On various public datasets, our algorithm
achieves better or comparable performance than state-of-the-
art monocular odometry methods. In some challenging texture-
less environments, our algorithm reduces the state estimation
error over 50%.

I. INTRODUCTION

Visual odometry (VO) and Simultaneous localization and
mapping (SLAM) have become popular topics in recent years
due to their wide application in robot navigation, 3D recon-
struction, and virtual reality. Different sensors can be used
such as RGB-D cameras [1], stereo cameras [2] and lasers,
which could provide depth information for each frame,
making it easier for state estimation and mapping. However
for some applications such as weight constrained micro aerial
vehicles [3], monocular cameras are more widely used due
to their small size and low cost. Therefore, in this work, we
are aiming at the more challenging monocular VO.

There are typically two categories of VO and vSLAM
approaches: (1) feature based methods such as PTAM [4] and
ORB SLAM [5]. They rely on feature point extraction and
matching to create sparse 3D map used for pose estimation
by minimizing re-projection geometric error. (2) Recently, di-
rect method [6] [7] also becomes popular. It directly operates
on the raw pixel intensity by minimizing photometric error
without feature extraction. These two methods both have
their advantages. Reprojection geometric error of keypoints
is typically more robust to image noise and large geometric
distortions and movement. Direct method on the other hand,
exploits much more image information and can create dense
or semi-dense maps.

In this paper, we utilize points and edges to combine the
advantages of the above two approaches. Edge is another
important feature apart from points. It has been used for
stereo [8] and RGB-D VO [9], but receives less attention in
monocular VO. The detection of edges is less sensitive to

The Robotics Institute, Carnegie Mellon University, 5000
Forbes Ave, Pittsburgh, PA 15213, USA. {shichaoy,
basti}@andrew.cmu.edu

Fig. 1. Tracking and 3D reconstruction on TUM mono dataset using
our edge based visual odometry. The top image shows the homogeneous
wall surface with low image gradients, which is challenging for VO only
minimizing photometric error. However, edge shown in blue can still be
detected to improve the tracking and mapping performance.

lighting changes by nature. For example, in a homogeneous
environment of Fig. 1, direct method using points only may
not work robustly due to small image gradient, but we can
still detect many edges shown in blue in the figure which
could be used for state estimation and mapping. In our
system, we maintain a semi-depth map for the keyframe’s
high gradient pixels as in many direct VO methods [6]. We
also detect and match edges for each frame. Then in the
tracking part, we jointly optimize both photometric error and
geometric error to the corresponding edge if it has. In the
mapping part, edges could also be used to guide and speed
up the stereo search and also improve depth map quality
by edge regularizing. By doing this, the proposed VO can
increase the accuracy of state estimation and also create a
good semi-dense map. We demonstrate this through various
experiments.

In summary, our main contributions are:
• A real-time monocular visual odometry algorithm in-

corporating points and edges, especially suitable for
texture-less environments.

• Provide an uncertainty analysis and probabilistic fusion
of points and lines in tracking and mapping.

• Develop analytical edge based regularization
• Outperform or comparable to existing direct VO in

many datasets.
In the following section, we discuss related work. In



Section III, we provide the problem formulation. Tracking
and mapping using points and edges are presented in Section
IV and Section V respectively, which also include proba-
bilistic uncertainty analysis of different observation model.
In Section VI, we provide experimental comparison with the
state-of-art algorithm. Finally, conclusion and future work is
discussed in Section VII

II. RELATED WORK

Our algorithm utilizes edges to combine feature based and
direct VO. We briefly introduce these three aspects.

A. Feature based VO

There have been many feature point based VO and SLAM,
for example LibVISO [2] and ORB SLAM [5]. They first
extract image features then track or match them across
images. The camera pose is estimated by solving the PnP
(Perspective N-Point Projection) problem to minimize geo-
metric error which is more robust to image noise and has a
large convergence basin [5] [10]. The drawback is that the
created map is usually sparse. A separate direct mapping
algorithm is required to get a semi-dense map [11].

B. Direct VO

In recent years, direct method [12] also becomes popular.
It optimizes the geometry directly on the image intensities
without any feature extraction so it can work in some texture-
less environments with few keypoints. It has been used for
real-time application of different sensors for example DVO
for RGB-D cameras [13] and LSD SLAM for monocular
cameras [7]. The core idea is to maintain a semi-dense map
for keyframes then minimize the photometric error which
is a highly non-convex function thus it requires good initial
guess for the optimization. In between direct and feature
based methods, SVO combines direct alignment and feature
points and can be used for high frame rate cameras.

C. Edge based VO

Edges are another important feature apart from points
especially in man-made environments. Edges are more robust
to lighting changes and preserve more information compared
to single points. Line-based bundle adjustment has been
used in SLAM or SfM [14] [15] which are computationally
expensive and require at least three frames for effective
optimization. Line-based VO without bundle adjustment has
recently been used for stereo cameras [16] [8] and RGB-
D [17] [9] and monocular cameras [18] [19]. Kuse et al.
minimize the geometric error to its nearby edges pixels
through distance transform [9] which might cause wrong
matching due to false detected edges and broken edges
while our line segment matching could greatly reduce the
error. Some works only minimize geometric error of two
edge endpoints [8] [17] which may generate large error for
monocular cameras due to inaccurate depth estimation.

III. PROBLEM DESCRIPTION

A. System Overview

Our algorithm is a frame to keyframe monocular VO. We
maintain a semi-depth map for the high gradient pixels in the
keyframe. Then for each incoming new frame, there are three
steps. First, detect line segments and match them with the
keyframe’s edges. The second step is camera pose tracking.
We minimize a combination of pixel photometric error and
geometric reprojection error if the pixel belongs to an edge.
Lastly, we update the depth map through variable baseline
stereo. Edges are used to speed up the stereo search for
those edge pixels and also improve reconstruction through
an efficient 3D line regularization.

B. Notations

We denote an intensity image as I : Ω ⊂ R2 7→ R, where
Ω represents the image domain. We keep a per-pixel inverse
depth map for a reference keyframe D : Ω ⊂ R2 7→ R+ and
inverse depth variance V : Ω 7→ R+.

The camera projection function is defined as π : R3 7→ R2,
which projects a camera-centered 3D point onto image plane.
The inverse projection function is then π−1 : (R2,R) 7→ R3

which back-projects an image pixel to the 3D space given
its depth.

The transformation between the current frame and ref-
erence keyframe is defined by a rigid transformation T ∈
SE(3). For an efficient optimization of T , we use the
minimal manifold representation by elements of the Lie-
algebra ξ ∈ se(3) [20], which is expressed by twist ξ =
(t;w)T ∈ R6. t ∈ R3 is the translation component and
w ∈ R3 is the rotation component, which can form rotation
matrix by the corresponding exponential map: R(w) =
exp([w]×) ∈ SO(3).

A warping function is defined as τ : Ω1×R×R6 7→ Ω2. It
takes the parameters of a pixel x ∈ Ω1 in the first image I1,
its depth d and relative camera transformation ξ, then returns
the re-projection point in second image I2. Internally, it first
back-projects x to 3D point by π−1, transforms it using ξ,
then projects to another frame using π.

An edge is represented by L in 3D space and l in 2D
image plane. All the edge pixels in an image are defined as
M : R2 7→ l which maps a pixel to its edge. Most of the
edge pixels M belong to the high gradient pixel set Ω.

IV. TRACKING

A. Overview

In the tracking thread, the depth map Dref of the reference
frame Iref is assumed to be fixed. The current image I is
aligned by minimization of the photometric residual r(ξ)
and line re-projection geometric error g(ξ) corresponding
to two observation model: photometric intensity observation
and edge position observations. It can be formulated as the
following non-linear least squares problem:

E(ξ) =
∑
i∈Ω

ri(ξ)
TΣ−1

ri ri(ξ) +
∑
j∈M

gj(ξ)
TΣ−1

gj gj(ξ) (1)



(a) (b)

(c)

Fig. 2. Tracking iterations for two images in TUM fr3/cabinet big dataset. (a) reference frame with detected edges (b) current frame with detected edges.
Two frames are 41 frames apart (about 1.4s). (c) Re-projected pixels on current frame during optimization iterations corresponding to 1, 4, 9, 20. We can
see that the re-projected edge pixels in green gradually align with the true edges in red. Best viewed in color.

where photometric error ri is defined by [6] [12]:

ri = Iref (xi)− I(τ(xi, Dref (xi), ξ)) (2)

gj is the re-projection error of pixel xi to its corresponding
line lj (homogeneous line representation):

gj = lTj τ̂(xi, Dref (xi), ξ) (3)

where τ̂() is the homogeneous coordinate operation. This
term is only used for the pixels of edges in Iref which
also have a matching edge in I . Σr and Σg represents the
uncertainty of two errors correspondingly.

The energy function Equation (1) is minimized through
iterative Gauss-Newton optimization. For iteration n, the
small update is:

δξn = −(JTWJ)−1JTWE(ξn) (4)

Where E is the stacked error vectors composed of two parts:
E = (r1, ..., rn, g1, ..., gm)T . J is the the Jacobian of E wrt.
ξ. W is the weight matrix computed from uncertainty Σ−1.
A tracking illustration is shown in Fig 2.

B. Tracking uncertainty analysis

Combining different types of error terms in Equation (1)
increases the robustness and accuracy of pose estimation. The
weights of different terms are proportional to the inverse of
the error variance Σr and Σg computed from the observation
models. Here, we provide an analysis of Σg . Photometric
error uncertainty Σr has been analysed in [6].

In the general case, the uncertainty of the output of
a function f(x) propagated from the input uncertainty is
expressed by:

Σf ≈ JfΣxJ
T
f (5)

where Jf is the Jacobian of f wrt. x.

In our case, as defined in Equation (3), the pixel re-
projection error to line is a function of line equation lj and
re-projected point x′i = τ̂(xi, Dref (xi), ξ). Line equation
is computed by cross product of two line endpoints lj =
p1 × p2. We can assume that the uncertainties Σp of end
point positions p1 and p2 is bi-dimensional Gaussians with
σ = 1. Then we can use rule in Equation (5) to compute
the uncertainties of line equation coefficients lj . It basically
implies that longer line has smaller line fitting uncertainties.

We can then similarly compute the variance of re-
projection point x′i = τ̂(xi, Dref (xi), ξ). It is a function
of pixel depth Dref (xi) with variance Vref (xi). The final
re-projection error covariance is a combination of the two
uncertainty sources:

Σgj = lTj Σx′
i
lj + x′Ti Σljx

′
i (6)

V. MAPPING

A. Overview

In the mapping thread, the depth map Dref of reference
frame is updated through stereo triangulation in inverse depth
filtering framework [6] followed by line regularization to
improve the accuracy. The camera pose is assumed to be
fixed in this step. The cost function for depth optimization
is defined as follows:

E(D) =
∑
i

ri(d)TΣ−1
ri ri(d) +

∑
j

Gj(d)TΣ−1
Gj
Gj(d) (7)

where ri(d) is the stereo matching photometric error. SSD
error over image patches is used to improve robustness. For
a line lj , we want its pixels to also form a line in 3D
space after back-projection, so Gj is edge regularization cost



'

'

l'l

L

g

Fig. 3. Line triangulation. 3D line L could be computed by the intersection
of two back-projected planes π, π′. For each pixel on l, its stereo matching
point is the intersection of epipolar line g and matched edge l′. The
triangulated point also lies on 3D line L. Modified from [22].

representing the distance of edge pixel’s 3D point to 3D
line. The regularization technique is also used in other dense
mapping algorithms [12] [21]. If only the first term ri is
used [6], all the pixels are independent of each other and
therefore could search independently along the epipolar line
to find the matching pixel. Regularization term Gj makes the
depth of pixels on one edge correlate with each other and
is typically solved by an iterative alternating optimization
through duality principles [12]. However, it requires much
heavier computation. Instead, we optimize for ri and Gj in
two stages more efficiently.

B. Stereo match with Lines

For the pixels not on the edge or pixels on an edge which
does not have a matching edge, we perform an exhaustive
search for the stereo matching pixel by minimizing SSD error
[6]. The depth interval for searching is limited by d + 2σd,
where d and σd is the depth mean and standard deviation.

For the pixels with a matched edge, the re-projected points
should lie on the matched edge as well as its epipolar line so
we can directly compute their intersection as the matching
point. We can also directly do line triangulation in Fig. 3 to
compute all pixel’s depth together. If the camera transform
of current frame I wrt. Iref is R ∈ SO(3), t ∈ R3, then
the 3D line L can be represented the intersection of two
back-projected plane [22]:

L =

[
πT1
πT2

]
=

[
lT1 K 0
lT2 KR lT2 Kt

]
(8)

where l1 and l2 are the line equation in Iref and I respec-
tively. K is the intrinsic camera parameter. Then for each
pixel, we can compute the intersection of the back-projected
ray with L to get its depth.

For the degenerated case where epipolar line and matched
edge are (nearly) parallel, we cannot compute the 3D line
accurately by plane intersection. Instead, we use the exhaus-
tive search along the epipolar line to find the matching pixel
with minimal SSD error.

C. Line matching uncertainty analysis

The uncertainty of intensity based stereo searching along
epipolar line has been analysed in [6]. Here we include the
analysis of edge based stereo matching error. For each edge

l

g

g'

θ
εg

λε

l'εl

Fig. 4. Disparity error using line matching. l is the edge where the matched
pixel should lie. g is the epipolar line. Due to a small positioning error εg , g
is shifted to g′. The same with l′ of positioning error εl. The final resulting
disparity error is ελ.

pixel in Iref , denote its epipolar line in I as g and its matched
edge as l then the matching pixel is the intersection of g and
l. These two lines both have positioning error εl and εg , and
finally cause a disparity error ελ shown in Fig. 4. The edge
uncertainty εl is already analyzed in Section IV-B which is
directly related to the edge length. ελ is large when g and l
are nearly parallel. Mathematically we have:

ελ = εl/ sin(θ) + εg cot(θ) (9)

where θ is the angle between line l and g.
From error propagation rule in Equation (5), we can

compute the variance of the disparity error:

σ2
λ = σ2

l / sin2(θ) + σ2
g cot2(θ) (10)

Using the approximation that inverse depth d is pro-
portional to disparity λ, we can calculate the observation
variance of d using Equation (5). It can then be used to
update the pixel’s depth variance in a standard EKF filtering
[6].

D. 3D Line regularization

Depth map regularization is important for monocular
mapping approaches to improve the depth estimation ac-
curacy. After the depth map EKF update in Section V-C,
the pixels on a 2D edge may not correspond to a line in
3D space, therefore, we need to fit lines in 3D space and
update a pixel’s depth. 3D weighted line fitting is recently
addressed in RGB-D line based odometry [17] which utilizes
Levenberg-Marquardt iterative optimization to find the best
3D line. Here we propose a fast and analytical solution to
the weighted 3D line fitting problem.

Since the 3D points are back-projected from the same 2D
edge, they should lie on the same plane G from projective
geometry. We can create anther coordinate frame F whose
x, y axis lie on the plane G. The transformed point on the
new coordinate frame is denoted as p′. We first use RANSAC
to select a set of inlier 2D points. The metric for RANSAC
is Mahalanobis distance, which is a weighted pixel to line
Euclidean distance considering the uncertainty:

dmah = min
q′∈l′

(p′ − q′)TΣ−1
p′ (p′ − q′) (11)

where q′ ∈ l′ indicates a point lying on line l′ in frame F .
dmah could be computed analytically by taking the derivative
wrt. q′ and setting to zero. More details could be found in
[17].



X

Y

Y

X

Z

G

F

Fig. 5. 3D line regularization. We first un-project pixel to 3D shown as
red dots on the 3D plane G. The pink ellipse shows the uncertainty of 3D
point. We can transform 3D points to a coordinate frame F lying on the grey
plane. The axis are X , Y in blue. Then we can use RANSAC to analytically
compute a weighted least square line instead of iterative optimization [17].
Image modified from [17]. Best viewed in color.

After RANSAC, we can find the largest consensus set of
points p′i, i = 1, ..., n. This becomes a 2D weighted line
fitting problem and we want to find the best line L∗ so that:

L∗ = min
L

∑
i

δ(p′i)
TΣ−1

p′i
δ(p′i) (12)

where δ(p′i) is distance of point p′i to line L along y axis. It
is an approximation of point to line distance but could lead
to a closed form solution. Stack all points p′i coordinates
as [X,Y] (after subtracting from mean) and weight matrix
as W which can be approximated as original image pixels’
covariance. Then the line model under consideration is Y =
Xβ+ ε, where β is line coefficients, and ε is assumed to be
normally distributed vector of noise. The MLE optimal line
under Gaussian noise is:

β̂ = argmin
β

∑
i

ε2i = (XTWX)−1XTWY (13)

We can then transform the optimal line L∗ in coordinate
frame F back to the original camera optical frame and
determine the pixel depth on the line.

VI. EXPERIMENTS AND RESULTS

A. Implementation

1. Edge detection and matching: We use the public line
segment detection algorithm [23]. To improve the tracking
accuracy, we adopt a coarse-to-fine approach using two
pyramid levels with a scale factor of two. Due to the
uncertainty of line detection algorithm, one complete line
can sometimes break into multiple segments so we explicitly
merge two lines whose angles and distance are very close
within a threshold. After that, we need to remove very short
line segments which may have large line fitting error. To
speed up the line merging, lines are assigned to different
bucket grids indexed by the middle points of an edge and
the orientation of it. Then we only need to consider possible
merging within the same and nearby bucket.

We then compute the LBD descriptor [24] for each line
and match them across images. Bucket technique is also

(a) (b) (c)

Fig. 6. Example images in TUM datasets with varying textures. (a)
fr2/desk, (b) fr3/cabinet, (c) fr3/notex-far. ORB SLAM performs worse on
(b) and (c) as there are fewer features points. Our algorithm can still utilize
the matched edge features to improve the state estimation.

utilized to speed up the matching. Finally, line tracing is
performed to find all pixels on an edge. We find that the
system becomes more robust and accurate if we expand the
line for one pixel possibly because more pixels are involved
by the line constraints in tracking and mapping.

2. Keyframe-based VO: our approach doesn’t have the
bundle adjustment of points and lines in SLAM and SfM
framework but could be extended to improve the perfor-
mance. Camera tracking, line matching and stereo map-
ping are implemented only between the current frame and
keyframe.

B. Experiments

In this section, we test our algorithm on various public
datasets including TUM RGBD [25], TUM mono [26] and
ICL-NUIM [27]. We mainly compare with the state of art
monocular direct SDVO [6] and feature based ORB SLAM
[5]. We also provide some comparison with edge based VO
[18] [19] in some datasets where the result is provided.
For ORB SLAM, we turn off the loop closing thread, but
still keep local and global bundle adjustment (BA) to detect
incremental loop-closures while our algorithm and SDVO are
VO algorithm without BA. We use the relative position error
metric (RPE) by Strum et al [25].

Ei = (Q−1
i Qi+δ)

−1(B−1
i Bi+δ) (14)

where Qi ∈ SE(3) is the sequence of ground truth poses
and Bi ∈ SE(3) is the estimated pose. Scale is estimated to
best align the trajectory.

1) Qualitative results: We choose TUM mono/38 [26] for
VO and mapping visualization shown in Fig. 1. It mainly
contains homogeneous white surfaces but there are still many
edges that could be utilized. Our method could generate good
quality mapping and state estimation. More results can be
found in the supplementary video.

2) Quantitative results: We first evaluate on two popular
sequences of TUM RGBD dataset fr2/desk and fr2/xyz shown
in Fig 6(a). Comparison is shown in Table I, where result
of SDVO and two edge based VO [18] [19] are obtained
from their paper. These two scenarios are feature rich envi-
ronments thus are most suitable for the feature-based ORB
SLAM with BA. Due to the large amounts of high gradient
pixels, SDVO also performs well. Due to many curved
bottles, leafs, and small keyboards, there is relatively large
line detection and matching errors for these environments,



TABLE I
RELATIVE POSITION ERROR (CM/S) COMPARISON ON TUM DATASET

Sequence Ours SDVO ORB-SLAM [18] [19]

fr2/desk 1.88 2.1 0.7 2.8 6.9
fr2/xyz 0.66 0.6 0.6 0.8 2.1

TABLE II
RELATIVE POSITION ERROR (CM/S) COMPARISON ON VARIOUS

DATASETS

Sequence Ours SDVO ORB-SLAM

ICL/office2 4.44 5.72 2.11
mono/38 2.04 5.4 1.16

ICL/office1 1.85 1.33 X
fr3/cabinet-big 8.82 16.23 33.57

fr3/cabinet 13.3 21.7 X
fr3/notex-far 4.32 10 X

our algorithm performs similarly to SDVO but better than
two other edge based VO.

We also provide results on more datasets shown in Table
II, where other edge VO doesn’t provide results. The top
two scenes are relative easy environments. In TUM mono/38
in Fig. 1, we only evaluate the beginning part which has
ground truth pose. Since there are still some corner points on
the door and showcase, ORB-SLAM with BA still performs
the best but our algorithm clearly outperforms the SDVO.
This is because the door surface is nearly homogeneous
without large intensity gradients so the photometric error
minimization of SDVO doesn’t work very well while our
algorithm can still use edges to minimize edge re-projection
error.

The last four scenes in Table II are more challenging
feature-less environments shown in Fig .6(b) and Fig .6(c).
ORB-SLAM doesn’t work well and even fails (denoted as
’X’) in some environments but direct VO can still work to
some extent because direct methods utilize high gradient and
edge pixels instead of feature points. Note that in ICL/office1
dataset, the overall scene has many feature points but ORB
SLAM failure happens when the camera only observes white
walls and ground with few distinguishable features. Our
method with line clearly outperforms SDVO in most of the
cases from the table and there are mainly two reasons. Firstly,
by adding edges, we are utilizing more pixels for tracking.
Some pixels might have low gradients due to homogeneous
surfaces but can still be utilized because of lying on edges
shown in Fig .6(c). Secondly, we are minimizing photometric
error as well as geometric error, which is known to be more
robust to image noise and has a large convergence basin.
This has been analysed and verified in many other works
[26] [5].

To demonstrate the advantage of a large convergence
basin in the optimization, we select two frames from TUM
fr3/cabinet big which are 41 frames apart (1.3s) and show

TABLE III
TIME ANALYSSI ON TUM FR3/CABINET BIG DATASET.

Component Value

Edge detection 16.24 ms
Descriptor computation 11.95 ms

Edge matching 4.52 ms
Tracking time 19.23 ms
Mapping time 10.99 ms
Edge number 193

the tracking iterations in Fig. 2. We can clearly see the re-
projected pixels in green gradually align with the true edges
in red.

C. Time analysis

We report the time usage of our algorithm running on
TUM fr3/cabinet big dataset shown in Table III. Using two
octaves of line detection, there are totally 193 edges on
average per frame. The total tracking thread apart from
mapping takes 51.95 ms, able to run around 20Hz. Time
could vary depending on the amounts of pixels involved
in the optimization. For now, edge detection and descriptor
computation consumes most of the time. This could be
speeded up using down-sampled image. Edline edge detector
[28] can also be used to reduce detection time by half but it
usually detects fewer edges compared to the currently used
method [23] and may affect the state estimation accuracy in
some challenging environments. Recently, Gomez et al [19]
utilize edge tracking to decrease the computation instead of
detection and matching for every frame, which is also a good
solution.

VII. CONCLUSIONS

In this paper, we propose a direct monocular odometry
algorithm utilizing points and lines. We follow the pipeline
of SDVO [6] and add edges to improve both tracking and
mapping performance. In the tracking part, we minimize both
photometric error and geometric error to the matched edges.
In the mapping part, using matched edges, we can get stereo
matching quickly and accurately without exhaustive search.
An analytical solution is developed to regularize the depth
map using edges. We also provide probability uncertainty
analysis of different observation models in tracking and
mapping part.

Our algorithm combines the advantage of direct and fea-
ture based VO. It is able to create a semi-dense map and
the state estimation is more robust and accurate due to the
incorporation of edges and geometric error minimization. On
various dataset evaluation, we achieve better or comparable
performance than SDVO and ORB SLAM. ORB SLAM
with bundle adjustment works the best in environments
with rich features. However, for scenarios with low texture,
ORB SLAM might fail and direct methods usually work
better. Our algorithm focuses on these scenarios and further
improves the performance of SDVO by adding edges.



In the future, we want to reduce the computation of
edge detection and matching by direct edge alignment. Also,
bundle adjustment of edges in multiple frames could also be
used to improve the accuracy. We will also exploit more
information by combining points, edges, and planes [29] in
one framework to improve the accuracy and robustness in
challenging environments.

ACKNOWLEDGMENTS
This work is supported by NSF award IIS-1328930.

REFERENCES

[1] Albert S Huang, Abraham Bachrach, Peter Henry, Michael Krainin,
Daniel Maturana, Dieter Fox, and Nicholas Roy. Visual odometry and
mapping for autonomous flight using an rgb-d camera. In International
Symposium on Robotics Research (ISRR), volume 2, 2011.

[2] Andreas Geiger, Julius Ziegler, and Christoph Stiller. Stereoscan:
Dense 3d reconstruction in real-time. In IEEE Intelligent Vehicles
Symposium, Baden-Baden, Germany, June 2011.

[3] Zheng Fang, Shichao Yang, Sezal Jain, Geetesh Dubey, Stephan Roth,
Silvio Maeta, Stephen Nuske, Yu Zhang, and Sebastian Scherer. Ro-
bust autonomous flight in constrained and visually degraded shipboard
environments. Journal of Field Robotics, 34(1):25–52, 2017.

[4] Georg Klein and David Murray. Parallel tracking and mapping for
small ar workspaces. In Mixed and Augmented Reality, 2007. ISMAR
2007. 6th IEEE and ACM International Symposium on, pages 225–
234. IEEE, 2007.

[5] Raul Mur-Artal, JMM Montiel, and Juan D Tardos. ORB-SLAM:
a versatile and accurate monocular SLAM system. Robotics, IEEE
Transactions on, 31(5):1147–1163, 2015.

[6] Jakob Engel, Jurgen Sturm, and Daniel Cremers. Semi-dense visual
odometry for a monocular camera. In Proceedings of the IEEE
international conference on computer vision, pages 1449–1456, 2013.

[7] Jakob Engel, Thomas Schöps, and Daniel Cremers. LSD-SLAM:
Large-scale direct monocular SLAM. In European Conference on
Computer Vision (ECCV), pages 834–849. Springer, 2014.

[8] Rubén Gómez-Ojeda and Javier González-Jiménez. Robust stereo
visual odometry through a probabilistic combination of points and
line segments. 2016.

[9] Manohar Prakash Kuse and Shaojie Shen. Robust camera motion
estimation using direct edge alignment and sub-gradient method. In
IEEE International Conference on Robotics and Automation (ICRA),
Stockholm, Sweden, 2016.

[10] Jakob Engel, Vladlen Koltun, and Daniel Cremers. Direct sparse
odometry. arXiv preprint arXiv:1607.02565, 2016.

[11] Raúl Mur-Artal and Juan D Tardós. Probabilistic semi-dense mapping
from highly accurate feature-based monocular SLAM. Proceedings of
Robotics: Science and Systems, Rome, Italy, 2015.

[12] Richard A Newcombe, Steven J Lovegrove, and Andrew J Davison.
Dtam: Dense tracking and mapping in real-time. In 2011 international
conference on computer vision, pages 2320–2327. IEEE, 2011.

[13] Christian Kerl, Jürgen Sturm, and Daniel Cremers. Dense visual slam
for rgb-d cameras. In 2013 IEEE/RSJ International Conference on
Intelligent Robots and Systems, pages 2100–2106. IEEE, 2013.

[14] Ethan Eade and Tom Drummond. Edge landmarks in monocular slam.
Image and Vision Computing, 27(5):588–596, 2009.

[15] Georg Klein and David Murray. Improving the agility of keyframe-
based slam. In European Conference on Computer Vision, pages 802–
815. Springer, 2008.

[16] Jonas Witt and Uwe Weltin. Robust stereo visual odometry using
iterative closest multiple lines. In 2013 IEEE/RSJ International
Conference on Intelligent Robots and Systems, pages 4164–4171.
IEEE, 2013.

[17] Yan Lu and Dezhen Song. Robust rgb-d odometry using point and
line features. In Proceedings of the IEEE International Conference on
Computer Vision, pages 3934–3942, 2015.

[18] Juan Jose Tarrio and Sol Pedre. Realtime edge-based visual odometry
for a monocular camera. In Proceedings of the IEEE International
Conference on Computer Vision, pages 702–710, 2015.

[19] Ruben Gomez-Ojeda, Jesus Briales, and Javier Gonzalez-Jimenez. Pl-
svo: Semi-direct monocular visual odometry by combining points
and line segments. In Intelligent Robots and Systems (IROS), 2016
IEEE/RSJ International Conference on, pages 4211–4216. IEEE, 2016.

[20] Richard M Murray, Zexiang Li, S Shankar Sastry, and S Shankara
Sastry. A mathematical introduction to robotic manipulation. CRC
press, 1994.

[21] Pedro Piniés, Lina Maria Paz, and Paul Newman. Dense mono
reconstruction: Living with the pain of the plain plane. In 2015 IEEE
International Conference on Robotics and Automation (ICRA), pages
5226–5231. IEEE, 2015.

[22] Richard Hartley and Andrew Zisserman. Multiple view geometry in
computer vision. Cambridge university press, 2003.

[23] von Gioi R Grompone, Jeremie Jakubowicz, Jean-Michel Morel, and
Gregory Randall. Lsd: a fast line segment detector with a false
detection control. IEEE transactions on pattern analysis and machine
intelligence, 32(4):722–732, 2010.

[24] Lilian Zhang and Reinhard Koch. An efficient and robust line
segment matching approach based on lbd descriptor and pairwise
geometric consistency. Journal of Visual Communication and Image
Representation, 24(7):794–805, 2013.

[25] Jürgen Sturm, Nikolas Engelhard, Felix Endres, Wolfram Burgard,
and Daniel Cremers. A benchmark for the evaluation of RGB-D
SLAM systems. In Intelligent Robots and Systems (IROS), IEEE/RSJ
International Conference on, pages 573–580. IEEE, 2012.

[26] J. Engel, V. Usenko, and D. Cremers. A photometrically calibrated
benchmark for monocular visual odometry. In arXiv:1607.02555, July
2016.

[27] A. Handa, T. Whelan, J.B. McDonald, and A.J. Davison. A benchmark
for RGB-D visual odometry, 3D reconstruction and SLAM. In IEEE
Intl. Conf. on Robotics and Automation, ICRA, Hong Kong, China,
May 2014.

[28] Cuneyt Akinlar and Cihan Topal. Edlines: A real-time line segment
detector with a false detection control. Pattern Recognition Letters,
32(13):1633–1642, 2011.

[29] Shichao Yang, Yu Song, Michael Kaess, and Sebastian Scherer.
Pop-up SLAM: a semantic monocular plane slam for low-texture
environments. In Intelligent Robots and Systems (IROS), 2016 IEEE
international conference on. IEEE, 2016.


	Introduction
	Related Work
	Feature based VO
	Direct VO
	Edge based VO

	Problem Description
	System Overview
	Notations

	Tracking
	Overview
	Tracking uncertainty analysis

	Mapping
	Overview
	Stereo match with Lines
	Line matching uncertainty analysis
	3D Line regularization

	Experiments and results
	Implementation
	Experiments
	Qualitative results
	Quantitative results

	Time analysis

	Conclusions
	References

