
Pop-up SLAM: Semantic Monocular Plane SLAM
for Low-texture Environments

Shichao Yang, Yu Song, Michael Kaess, and Sebastian Scherer

Abstract— Existing simultaneous localization and mapping
(SLAM) algorithms are not robust in challenging low-texture
environments because there are only few salient features.
The resulting sparse or semi-dense map also conveys little
information for motion planning. Though some work utilize
plane or scene layout for dense map regularization, they require
decent state estimation from other sources. In this paper, we
propose real-time monocular plane SLAM to demonstrate that
scene understanding could improve both state estimation and
dense mapping especially in low-texture environments. The
plane measurements come from a pop-up 3D plane model
applied to each single image. We also combine planes with point
based SLAM to improve robustness. On a public TUM dataset,
our algorithm generates a dense semantic 3D model with pixel
depth error of 6.2 cm while existing SLAM algorithms fail. On
a 60 m long dataset with loops, our method creates a much
better 3D model with state estimation error of 0.67%.

I. INTRODUCTION

Simultaneous localization and mapping (SLAM) is widely
used for tasks including autonomous navigation, 3D mapping
and inspection. Various sensors can be used for SLAM such
as laser-range finders cameras, and RGB-D depth cameras.
Monocular cameras are a popular choice of sensor on robots
as they can provide rich visual information at a small
size and low cost. They are especially suitable for weight
constrained micro aerial vehicles that can carry only one
camera. Therefore, in this work we focus on using monocular
images to estimate the pose and map of the environment.

On one hand, many existing visual SLAM methods utilize
point features such as direct LSD SLAM [1] and feature
based ORB SLAM [2]. These methods track features or high-
gradient pixels across frames to find correspondences and
triangulate depth. They usually perform well in environments
with rich features but cannot work well in low-texture
scenes as often found in corridors. In addition, the map is
usually sparse or semi-dense, which does not convey much
information for motion planning.

On the other hand, humans can understand the layout,
estimate depth and detect obstacles from a single image.
Many methods have been proposed to exploit the geometry
cues and scene assumption in order to build a simplified
3D model. Especially in recent years, with the advent of
Convolutional Neural Networks (CNN) [3], performance of
visual understanding has been greatly increased.

In this paper, we combine scene understanding with
traditional v-SLAM to increase the performance of both

The Robotics Institute, Carnegie Mellon University, 5000 Forbes
Ave, Pittsburgh, PA 15213, USA. {shichaoy, songyu, kaess,
basti}@andrew.cmu.edu

Fig. 1. 3D reconstruction on low-texture TUM dataset. (top) Single frame,
raw image on left and 3D pop-up plane model on right. (center) Dense
reconstruction using our Pop-up Plane SLAM. Each plane has a label of
either a specific wall or ground. (bottom) Top view of the 3D model. Existing
state-of-art SLAM algorithms fail.

state estimation and dense mapping especially in low-texture
environments. We use a single image pop-up plane model [4]
to generate plane landmark measurements in SLAM. With
proper plane association and loop closing, we are able to
jointly optimize scene layout and poses of multiple frames
in the SLAM framework. In the low-texture environment
of Figure 1, our algorithm can still generate dense 3D
models and decent state estimates while other state-of-the-art
algorithms fail. However, plane SLAM can easily be under-
constrained, hence we propose to combine it with traditional
point-based LSD SLAM [1] to increase robustness.

In summary, our main contributions are:

• A real-time monocular plane SLAM system incorporat-
ing scene layout understanding,

• Integrate planes with point-based SLAM for robustness,
• Outperform existing methods especially in some low-

texture environments and demonstrate the practicability
on several large datasets with loops.

In the following section, we discuss related work. Section
III describes the single image layout understanding, which
provides plane measurements for plane SLAM. In Section
IV, we introduce the Pop-up Plane SLAM formulation and

combine it with LSD SLAM in Section V. Experiments on
a public TUM dataset and actual indoor environments are
presented in Section VI. Finally, we conclude in Section VII.

II. RELATED WORK

Our approach combines aspects of two research areas:
single image scene understanding and multiple images visual
SLAM. We provide a brief overview of these two area.

A. Single Image

There are many methods that attempt to model the
world from a single image. Two representative examples are
cuboidal room box model proposed based on vanishing point
by Hedau et al. [5] and fixed building model collections
based on line segments by Lee et al. [6]. Our previous
work [4] proposed the pop-up 3D plane model, combining
CNNs with geometry modeling. Results show that our work
is more robust to various corridor configurations and lighting
conditions than existing methods.

B. Multiple Images

1) v-SLAM using points: Structure from Motion and v-
SLAM have been widely used to obtain 3D reconstructions
from images [7]. These methods track image features across
multiple frames and build a globally consistent 3D map using
optimization. Two representatives of them are direct LSD
SLAM [1] and feature- based ORB SLAM [2]. But these
methods work poorly in low-texture environments because
of the sparse visual and geometric features.

2) v-SLAM using planes: Planes or superpixels have been
used in [8]–[10] to provide dense mapping in low-texture
areas. But they assume camera poses are provided from
other sources such as point based SLAM, which may not
work well in textureless environments as mentioned above.
Recently, Concha et al. [11] also propose to use room layout
information to generate depth priors for dense mapping
however they don’t track and update the room layout thus
can only work in small workspace.

3) Scene understanding: Some works focus on the scene
understanding using multiple images, especially in a Man-
hattan world. Flint et al. [12] formulate it as Bayesian
framework using monocular and 3D features. [13], [14] gen-
erate many candidate 3D model hypotheses and subsequently
update their probability by feature tracking and point cloud
matching. Unfortunately, these methods do not use a plane
world to constrain the state estimation and thus cannot solve
the problem of v-SLAM in low-texture environments.

III. SINGLE IMAGE PLANE POP-UP

This section extends our previous work [4] to create a
pop-up 3D plane model from a single image. We first briefly
recap the previous work, discuss its limitation, and propose
two improvements accordingly.

A. Pop-up 3D Model

There are three main steps in [4] to generate 3D world:
CNN ground segmentation (optionally with Conditional Ran-
dom Field refinement), polyline fitting, and pop up 3D plane
model. It outperforms existing methods in various dataset
evaluation. However, there are some limitations:

Firstly, [4] fit polylines along the detected ground region
which might not be the true wall-ground edges and thus
generate a invalid 3D scene model. For example in Figure
2, it cannot model the right turning hallway. This results in
problems attempting to use these planes in SLAM framework
because even in adjacent frames, the fitted line segments may
be different. However, SLAM requires the landmark (in our
case, planes), to be invariant across frames.

Secondly, [4] uses a zero rotation pose assumption, which
in most cases, is not satisfied. Different rotation angles may
generate different pop-up 3D model.

In the following two sections, we solve these problems
and generate a more accurate 3D map shown at the bottom
of Figure 2.

Fig. 2. Single image pop-up plane model. (top) Original method of [4].
From left to right: CNN segmentation, polyline fitting, pop-up 3D model.
(bottom) Improved method. From left to right: line segment detection,
selected ground-wall edges, pop-up 3D model. Better ground edge detection
and camera pose estimation lead to a more accurate 3D model.

B. Optimal Boundary Detection

Instead of using a fitted polygon as a wall-ground bound-
ary, we propose to detect the true ground-wall edges. We
first extract all the line segments using [15]. But as other
line detectors, this algorithm also has detection noise. For
example, a long straight line may be detected as two dis-
connected segments. We propose an algorithm to optimally
select and merge edges as a wall-ground boundary shown in
the bottom center of Figure 2.

Mathematically, given a set of detected edges V =
{e1, e2, ..., en}, we want to find the optimal subset edges
S ⊆ V , such that:

max
S⊆V

F (S), st : S ∈ I (1)

where F is the score function and I is the constraint. Due to
the complicated scene structures in the real world, there is
no standard way of expressing F and I as far as we know,
so we intuitively design them to make it more adaptable to

various environments, not limited to a Manhattan world as
it is typically done in many current approaches [11] [13].

The first constraint indicates that edges should be close
to the CNN detected boundary curve ξ within a threshold
shown as red curve in the top left of Figure 2. It can be
denoted as:

Iclose = {S : ∀e ∈ S, dist(e, ξ) < δclose} (2)

The second constraint is that edges should not overlap with
each other beyond a threshold in image horizontal direction
shown in Figure 3(a). This is true for most cases in the real
world. In the latter experiments, we find that even for the
unsatisfactory configurations in Figure 3(b), our algorithm
can select most of the ground edges. We can denote this
constraint as:

Iovlp = {S : ∀ei, ej ∈ S,O(ei, ej) < δovlp} (3)

where O is horizontal overlapping length between two edges.

(a) (b)

Fig. 3. (a) Desired corridor configurations where our algorithm can select
all the ground edges. (b) Unsatisfactory configurations because of too much
overlap horizontally. Our algorithm might miss some ground edges.

Similarly, we want to maximize the covering of edges in
image x direction. So the score function is defined as:

F : {S → R, F = C(S)} (4)

where C is the horizontal covering length of edge sets S.
With the defined score function F and constraints I =

Iclose ∩ Iovlp, the problem changes to a submodular set
optimization. We adopt a greedy algorithm [16] to select
the edges in sequence. We initially start with an empty set
of edges S, then iteratively add edges by:

S ← S ∪ { arg max
e/∈S:S∪{e}∈I

4(e | S)} (5)

until there is no feasible edges. 4(e | S) is the marginal
gain of adding edge e into set S. Details and proof of
submodularity and optimality are in the appendix.

After getting the edge set S, some post processing steps
are required for example removing tiny edges and merging
adjacent edges into a longer one similar to [5].

C. Pop-up World from an Arbitrary Pose
Notations. We use subscript w to represent global world

frame and c to denote local camera frame. gnd is short for
ground plane. A plane can be represented as a homogeneous
vector πππ = (π1, π2, π3, π4)> = (n>, d)>, where n is the
plane normal vector, and d is its distance to the origin [17]
[18]. The camera pose is represented by the 3D Euclidean
transformation matrix Tw,c ∈ SE(3) from local to global
frame. Then a local point pc can be transformed to global
frame by: pw = Tw,cpc, and a local plane πππc is transformed
to global frame by:

πππw = T−>w,cπππc (6)

1) Create 3D model: For each image pixel u ∈ R3

(homogeneous form) belonging to a certain local plane πππc,
the corresponding 3D pop-up point pc is the intersection of
backprojected ray K−1u with plane πππc:

pc =
−dc

n>c (K−1u)
K−1u (7)

where K is calibration matrix.
Then we show how to compute the plane equation πππc.

Our world frame is built on the ground plane represented by
πππgnd,w = (0, 0, 1, 0)

>. Suppose a ground edge’s boundary
pixels are u0,u1, their 3D point pc0,pc1 can be computed by
Equation (6) (7). Using the assumption that wall is vertical
to the ground, we can compute the wall plane normal by:

nwall,c = ngnd,c × (pc1 − pc0) (8)

We can further compute dwall,c using the constraints that two
points pc0,pc1 lying on the wall.

2) Camera pose estimation: The camera pose Tw,c could
be provided from other sensors or state estimation methods.
Here, we show a single image attitude estimation method
which could be used at the SLAM initialization stage. For a
Manhattan environment, there are three orthogonal dominant
directions e1 = (1, 0, 0)

>
, e2 = (0, 1, 0)

>
, e3 = (0, 0, 1)

>

corresponding to three vanishing points v1,v2,v3 ∈ R3 in
homogeneous coordinate. If the camera rotation matrix is
Rw,c ∈ R3×3, then vi can be computed by [5] [19]:

vi = KR>w,cei, i ∈ {1, 2, 3} (9)

With three constraints of Equation (9), we can recover the
3 DoF rotation Rw,c.

IV. POP-UP PLANE SLAM

This section introduces the Pop-up Plane SLAM using
monocular images. Plane SLAM has recently been addressed
by Kaess [18] with a RGB-D sensor, here we extend it to
the monocular case based on the pop-up plane model.

A. Planar SLAM Formulation

The factor graph of planar SLAM is shown in Figure 4.
We need to estimate the 6 DoF camera poses x0, ..., xt and
plane landmarks πππ0, ...,πππn using the plane measurements
c0, ..., cm, odometry measurements u1, ..., ut and initial pose
constraint p. Note that, our plane landmark also has a label
being either ground or wall. The ground plane landmark πππ0

is connected to all pose nodes.
The homogeneous plane representation πππ = (n>, d)> is

over-parametrized and therefore the information matrix of
SLAM is singular and not suitable for Gauss-Newton solver
and incremental solvers such as iSAM [20]. We utilize the
minimal plane representation in [18] to represent planes as
a unit quaternion q = (q1, q2, q3, q4)> ∈ R4 st. ‖q‖ = 1.
We can therefore use Lie algebra and exponential map to do
plane updates during optimization.

Wall 1 Wall 2

Ground 00

Fig. 4. Plane SLAM factor graph. Variable nodes include camera pose x,
plane landmark π. Factor nodes are odometry measurements u and plane
measurements c. The latter come from the single image pop-up model. Each
plane node π also has a label of either ground or wall.

B. Plane Measurement

Most plane SLAM [18], [21] uses RGB-D sensor to get
plane measurements c from the point cloud segmentation.
In our system, plane measurements c come from the pop-up
plane model in Section III-C. Note that the pop-up process
depends on the camera pose, more specifically rotation and
height because camera x, y position does not affect local
plane measurements. So we need to re-pop up the 3D plane
model and update plane measurement c after camera poses
are optimized by plane SLAM. This step is fast with simple
matrix operation explained in Section III-C. It takes less than
1ms to update hundred’s plane measurement.

C. Data Association

We use the following three geometry information for
plane matching: the difference between plane normals, plane
distance to each other and projection overlapping between
planes. The plane’s bounding polygon for projection comes
from the pop-up process. Outlier matches are first removed
by thresholds of the three metrics. Then the best match is
selected based on a weighted sum of them.

n1
n2

tfree

2-1

Fig. 5. Data association and unconstrained situations. π1, π2 are two planes
with normals n1, n2 respectively. π2 1 is the projected plane from π2 onto
π1, used for data association. In this example, n1 and n2 are parallel so
there is an unconstrained direction along tfree.

D. Loop Closure

We adopt a bag of words (BoW) place recognition method
[22] for loop detection. Each frame is represented as a vector
of visual worlds computed by ORB descriptors so as to
calculate the similarity score between two frames. Once a
loop closure frame is detected, we search all the plane pairs
in the two frames and find the plane pairs with smallest
image space distance. We also tested to keep BoW visual

words for each plane, but it is not robust especially in
texture-less images. Different from point landmarks, plane
landmarks have different appearance and size in different
views. So we may recognize the same planes after the
landmark has been created and observed for sometime. So
after detecting, for example, πn and π2 as the same plane
in Figure 6, we shift all the factors of plane πn to the other
plane π2, and remove the landmark πn from factor graph.

Wall 1 Wall 2

Ground 00

Wall n
Detect same plane

n

Fig. 6. Plane SLAM loop closure. After detecting a loop closure, we shift
all the factors of plane πn to π2 and remove πn from factor graph.

V. POINT-PLANE SLAM FUSION

Compared to point based SLAM, planar SLAM usually
contains much fewer landmarks so it becomes easily uncon-
strained. For example in a long corridor in Figure 5 where
left and right walls are parallel, there is a free unconstrained
direction tfree along corridor if there is no other plane
constraints. We solve this problem by incorporating with
point based SLAM, specifically LSD SLAM [1], to provide
photometric odometry constraints along the free direction.
We propose the two following combinations.

A. Depth Enhanced LSD SLAM

This section shows that scene layout understanding could
boost the performance of traditional SLAM. LSD SLAM
has three main threads: camera tracking, depth estimation
and global optimization in Figure 7. The core part is depth
estimation, determining the quality of other modules. In LSD
SLAM, when a new depth map of a keyframe is created, it
propagates some pixels’ depth from the previous keyframe if
it is available. Then the depth map is continuously updated
by new frames using multiple-view stereo (MVS). Since our
single image pop-up model in Section III provides each
pixel’s depth estimation, we integrate its depth into LSD
depth map in the following way:

(1) If a pixel has no propagated depth or the variance of
the LSD SLAM depth exceeds a threshold, we directly use
pop-up model depth.

(2) Otherwise, if a pixel has a propagated depth dl with
variance σ2

l from LSD, we fuse it with the pop-up depth dp
of variance σ2

p using the filtering approach [23]:

N

(
σ2
l dp + σ2

pdl

σ2
l + σ2

p

,
σ2
l σ

2
p

σ2
l + σ2

p

)
(10)

σ2
p could be computed by error propagation rule during the

pop-up process. In Section III-C, the pixel uncertainty of u
can be modeled as bi-dimensional standard Gaussians Σu. If

the Jacobian of pc wrt. u is Ju from Equation (7), then the
3D point’s covariance Σpc = JuΣuJ

>
u . We find that depth

uncertainty σ2
p is proportional to the depth square, namely

σ2
p ∝ d2p.

Camera
Tracking

Graph
Optimization

Depth
Estimation

Pop-up
Model

Pose
Depth Fusion

LSD SLAM

Single Image Pop-up

Fig. 7. Depth Enhanced LSD SLAM algorithm that integrates depth
estimates from the pop-up model.

Depth fusion could greatly increase the depth estimation
quality of LSD SLAM especially at the initial frame where
LSD SLAM just randomly initializes the depth and at the
low parallax scenes where MVS depth triangulation has low
quality. This is also demonstrated in the latter experiments.

B. LSD Pop-up SLAM

There has been some work jointly using point and plane
as landmarks in one SLAM framework [21] using RGB-
D sensors. Currently, we propose a simple version of it to
run two stages of SLAM methods. The first stage is Depth
Enhanced LSD SLAM in Section V-A. We then use its pose
output as odometry constraints to run a plane SLAM in
Section IV. The frame-to-frame odometry tracking based
on photometric error minimization could provide constraints
along the unconstrained direction in plane SLAM and can
also capture the detailed fine movements, demonstrated in
the latter experiments.

Figure 8 shows the relationship of the three SLAM meth-
ods in this paper. The blue dashed box is the improved LSD
SLAM: Depth Enhanced LSD SLAM. The green and red
box show two kinds of plane SLAM. The difference is that
LSD Pop-up SLAM in this section has additional odometry
measurement while Pop-up Plane SLAM does not have and
usually uses a constant velocity assumption.

Single
 Pop-up

Monocular Sequences 3D Plane map Plane SLAM

 Plane
Measurement

 Odometry
Measurement

Depth Fusion

LSD SLAM

Depth Enhanced LSD SLAM LSD Pop-up SLAM

Pop-up Plane SLAM

Pose Node

Plane
Landmark

Fig. 8. Relationship between three proposed SLAM methods: (1) Pop-up
Plane SLAM uses plane measurements from the single image pop-up model.
(2) Depth Enhanced LSD SLAM is LSD SLAM with depth fusion from
the pop-up model. (3) LSD Pop-up SLAM is plane SLAM with additional
odometry measurements from Depth Enhanced LSD SLAM.

VI. EXPERIMENTS AND RESULTS

We test our SLAM approaches on both the public TUM
dataset [24] and two collected corridor datasets to evaluate
the accuracy and computational cost. Results can also be
found in the supplemental videos. We compare the state
estimation and 3D reconstruction quality with two state-of-
art point based monocular SLAM approaches: LSD SLAM
[1] and ORB SLAM [2].

A. TUM SLAM dataset

We choose the TUM fr3/structure notexture far dataset in
Figure 1, which is a challenging environment composed of
five white walls and a ground plane. We only use RGB im-
ages for experiments and use the depth images for evaluation.

1) Qualitative Comparison: Unfortunately, neither LSD
nor ORB SLAM work in this environments because there
are only few features and high gradient pixels.

For the Pop-up Plane SLAM in Section IV, we use the
ground truth pose for initialization and a constant velocity
motion assumption as odometry measurements. Since the
initial truth height is provided, the pop-up model has an
absolute scale. Therefore, we can directly compare the pose
and map estimates with ground truth without any scaling.
The constructed 3D map is shown in Figure 1.

2) Quantitative Comparison: The absolute trajectory esti-
mate is shown in Figure 9. This dataset has a total length of
4.58m and our mean positioning error is 0.18± 0.07m, with
endpoint error 0.10m. From Figure 9, our algorithm captures
the overall movement but not the small jerk movement in
the middle. This is mainly due to the fact that there are only
few plane landmarks in SLAM. In addition, Pop-up Plane
SLAM does not have frame-to-frame odometry tracking to
capture the detailed movement, which is commonly used
in point based SLAM. In the latter experiments, we show
that after getting odometry measurements, state estimation
of LSD Pop-up SLAM improves greatly.

Fig. 9. Absolute trajectory estimation using Pop-up Plane SLAM on TUM
fr3/str notex far dataset. The positioning error is 3.9%, while LSD SLAM
and ORB SLAM both fail.

To evaluate mapping quality, we use provided depth maps
to compute the ground truth plane position by point cloud
plane segmentation using the PCL RANSAC algorithm. The
plane normal error is only 2.8◦ as shown in Table I. We then
re-project the 3D plane model onto images to get each pixel’s

depth estimates. The evaluation result is shown in Figure 10
and Table I. The mean pixel depth error is 6.2 cm and 86.8%
of the pixels’ depth error is within 0.1m.

Our depthTruth depthRGB image

Fig. 10. Depth reconstruction comparison on TUM dataset.

TABLE I
3D RECONSTRUCTION EVALUATION ON TUM DATASET.

Plane normal error Depth error Depth error < 0.1m

Value 2.83◦ 6.2 cm 86.8%

B. Large Indoor Environment

In this section, we present experimental results using a
hand-held monocular camera with a resolution of 640 × 480
in two large low-texture corridor environments. The camera
has a large field of view (∼ 90◦) which LSD and ORB
SLAM typically prefer. Since we do not have ground truth
depth or pose, we only evaluate the loop closure error and
qualitative map reconstruction. The pose initialization uses
the single image rotation estimation in Section III-C with an
assumed height of 1m.

1) Corridor dataset I: The first dataset is shown in Figure
11. LSD SLAM, top center, does not perform well. The best
result for ORB SLAM is shown in the top right. Through
the tests, we find that even using the same set of parameters,
ORB SLAM often cannot initialize the map and fails to track
cameras. The randomness results from the RANSAC map
initialization of ORB SLAM [2].

Since actual long corridors are easily under-constrained,
Pop-up Plane SLAM with no actual odometry measurement
does not work well. We only provide results for the two other
SLAM methods introduced in Section V. Depth Enhanced
LSD SLAM generates a much better map as shown in the
bottom left of Figure 11 compared to the original LSD
SLAM. Though it is a semi-dense map, we can clearly see
the passageway and turning. Based on that, the LSD Pop-up
SLAM generates a dense 3D model with distinct doors and
pillars.

2) Corridor dataset II: The second dataset is a 60m
square corridor containing a large loop shown in Figure 12.
ORB SLAM generates a better map than LSD SLAM, but it
does not start tracking until it comes to a large open space
with more features and enough parallax.

Fig. 11. Corridor dataset I. (top) From left to right: sample frame, LSD
SLAM result, ORB SLAM result. (bottom) Our Enhanced LSD SLAM in
Section V-A, LSD Pop-up SLAM result in Section V-B.

The result of our algorithms is shown in Figure 13 where
the red line is Enhanced LSD SLAM and green line is LSD
Pop-up SLAM. With the automatic loop closure detection, the
LSD Pop-up SLAM generates the best 3D map and smallest
loop closure error. The grid dimension is 1× 1m2 in Figure
13 and the loop closure positioning error is 0.4m of the total
60m trajectory.

Fig. 12. Corridor dataset II with loop closure. (top) Sample frames in the
dataset. (bottom): LSD SLAM result, ORB SLAM result.

C. Runtime Analysis

Finally, we provide the computation analysis of the Cor-
ridor dataset II in Table II. All timings are measured on
CPU (Intel i7, 4.0 GHz) and GPU (only for CNN). Most
of the code is implemented in C++. Currently, the CNN
segmentation, edge detection, and selection consumes 30ms.
Note that compared to CNN model in [4], we change the
fully connected layers from 4096 to 2048 to reduce the
segmentation time by half without affecting the accuracy too
much. The iSAM incremental update takes 17.43ms while
batch optimization takes 45.35ms. Therefore we only use
batch optimization to re-factor the information matrix when
a loop closure is detected. In all, our plane SLAM algorithm
can run in real time at over 20Hz using single-threaded
programming.

Fig. 13. Corridor dataset II with loop closure (continued). Red line:
Enhanced LSD SLAM result in Section V-A, green line: LSD Pop-up SLAM
result in Section V-B. Loop closure happens around the top left corner. The
grid dimension is 1m. Loop closure positioning error is 0.67%.

We also note that unlike point landmarks, a plane landmark
can be observed in many adjacent frames, so we actually do
not need to pop up planes for each frame. Thus in all the
above pop-up experiments, we process the images at 3Hz
(every 10 images), which we find is enough to capture all
the planes. This is similar to the keyframe techniques used
in many point-based SLAM algorithms.

TABLE II
SLAM STATISTICS AND TIME ANALYSIS ON CORRIDOR DATASET II.

Number of planes 146

Number of poses 344

Number of factors 1974

CNN segmentation (ms) 17.8

Edge detection and selection (ms) 13.2

Data association (ms) <1

iSAM optimization (ms) 17.4

Total frame time (ms) 49.4

D. Discussion

1) Height effect on map scale: Unlike RGB-D plane
SLAM whose plane measurements are generated by the
actual depth sensor, our plane measurement and scale is
determined by the camera height in the pop-up process in
Section III-C. Camera height cannot be constrained by the
plane measurements any more and therefore can only be
constrained by other information such as odometry measure-
ments or other sensors such as IMU. If other information is
inaccurate or inaccessible, the map scale and camera height

might drift using the plane SLAM alone. During all the
experiments, we did not encounter the scale drift problem
because the cameras are kept at a nearly constant height. In
the future, we would like to integrate with other sensors.

2) Ground effect on graph complexity: Since the pop-up
process in Section III-C requires the ground plane to be
visible, the ground plane landmark is connected to all the
camera poses as shown in Figure 4. This will reduce the
sparsity of the information matrix and increase the computa-
tional complexity in theory. However, it can be alleviated
by variable reordering before matrix decomposition, for
example using the COLAMD algorithm that will force this
variable towards the last block column, thereby reducing its
impact (see [20]). From the experiments, the ground plane
usually increases fill-in (added non-zero entries) by only
about 10%.

VII. CONCLUSIONS

In this paper, we propose Pop-up Plane SLAM, a real-
time monocular plane SLAM system combined with scene
layout understanding. It is especially suitable for low-texture
environments because it can generate a rough 3D model
even from a single image. We first extend previous work to
pop up a 3D plane world from a single image by detecting
the ground-wall edges and estimating camera rotation. Then,
we formulate a plane SLAM approach to build a consistent
plane map across multiple frames and also provide good state
estimates. The plane landmark measurement comes from the
single image pop-up model. We utilize the minimal plane
representation for optimization and also implement plane
SLAM loop closing.

Since plane SLAM itself is easily under-constrained in
some environments, we propose to combine it with point
based LSD SLAM in two ways: the first is Depth Enhanced
LSD SLAM by integrating pop-up pixel depth into LSD
depth estimation, the second is LSD Pop-up SLAM, which
uses poses from Depth Enhanced LSD SLAM as odometry
constraints and runs a separate Pop-up Plane SLAM.

In the experiment with the public TUM dataset, Pop-up
Plane SLAM generates a dense 3D map with depth error
of 6.2 cm and state estimates error of 3.9% while the
state-of-art LSD or ORB SLAM both fail. Two collected
large corridor datasets are also used to demonstrate its
practicality and advantages. The loop closure error of LSD
Pop-up SLAM on a 60m long dataset is only 0.67%, greatly
outperforming LSD and ORB SLAM methods. The runtime
analysis demonstrates that our algorithm could run in (near)
real-time over 10Hz.

In the future, we want to combine point, edge and plane
landmarks in a unified SLAM framework. In addition, we
would like to test this algorithm on robots. Besides, more
work needs to be done in clutter corridors where ground-
wall boundaries may be occluded.

APPENDIX

A. Submodular Edge Selection

Here, we briefly provide the optimality analysis of the
edge selection as an extension to Section III-B. We prove
that it is a submodular set selection problem with matroid
constraints [16].

1) Monotonicity: The score function F in Equation (4)
is obviously monotonically increasing because adding more
edges, the covering in image horizontal direction will not
decrease.

2) Submodularity: We first define the marginal gain of e
wrt. S as the increase of score F after adding element e into
S, namely

4(e | S) := F (S ∪ {e})− F (S)

For two sets S1 ⊂ S2, edge e may overlap with more
edges in S2 and thus reduce the marginal gain compared to
S1, so it satisfies the submodularity condition:

4(e | S1) ≥ 4(e | S2), ∀S1 ⊆ S2

3) Matroid constraint type: We can remove the edges that
are far from CNN boundary before submodular optimization,
so we only consider the second constraint Iovlp in Equation
(3). Denote all the conflicting edge pairs as Ei = {(ei1, ei2) |
O(ei1, ei2) ≥ δovlp}, i = 1, 2, ..., k. For each Ei, we form
a partition of the ground set V by two disjoint sets Pi =
{Ei, V \Ei} and thus can form a partition matroid constraint
Imi = {S : |S ∩ P 1

i | ≤ 1, |S ∩ P 2
i | ≤ n}, where P 1

i and P 2
i

are two elements of Pi. This is because we can pick at most
one element from Ei. The union of k such separate matroid
constraints forms the original constraint Iovlp = Im1 ∩Im2 ...∩
Imk .

4) Optimality: From [16], the greedy algorithm in Equa-
tion (5) of the submodular optimization with matroid con-
straints is guaranteed to produce a solution S such that
F (S) ≥ 1

k+1 maxS⊆I F (S). It is also important to note
that this is only a worst case bound and in most cases, the
quality of solution obtained will be much better than this
lower bound.

ACKNOWLEDGMENTS

This work was supported by NSF award IIS-1328930 and
IIS-1426703, and by ONR grant N00014-14-1-0373.

REFERENCES

[1] Jakob Engel, Thomas Schöps, and Daniel Cremers. LSD-SLAM:
Large-scale direct monocular SLAM. In European Conference on
Computer Vision (ECCV), pages 834–849. Springer, 2014.

[2] Raul Mur-Artal, JMM Montiel, and Juan D Tardos. ORB-SLAM:
a versatile and accurate monocular SLAM system. Robotics, IEEE
Transactions on, 31(5):1147–1163, 2015.

[3] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet
classification with deep convolutional neural networks. In Advances
in neural information processing systems (NIPS), pages 1097–1105,
2012.

[4] Shichao Yang, Daniel Maturana, and Sebastian Scherer. Real-time 3D
scene layout from a single image using convolutional neural networks.
In Robotics and automation (ICRA), IEEE international conference on,
pages 2183 – 2189. IEEE, 2016.

[5] Varsha Hedau, Derek Hoiem, and David Forsyth. Recovering the
spatial layout of cluttered rooms. In Computer vision, 2009 IEEE
12th international conference on, pages 1849–1856. IEEE, 2009.

[6] Daniel C Lee, Martial Hebert, and Takeo Kanade. Geometric reasoning
for single image structure recovery. In Computer Vision and Pattern
Recognition (CVPR), IEEE Conference on, pages 2136–2143. IEEE,
2009.

[7] Georg Klein and David Murray. Parallel tracking and mapping for
small AR workspaces. In Mixed and Augmented Reality (ISMAR), 6th
IEEE and ACM International Symposium on, pages 225–234. IEEE,
2007.

[8] Yasutaka Furukawa and Jean Ponce. Accurate, dense, and robust
multiview stereopsis. Pattern Analysis and Machine Intelligence, IEEE
Transactions on, 32(8):1362–1376, 2010.

[9] Alejo Concha and Javier Civera. DPPTAM: Dense piecewise planar
tracking and mapping from a monocular sequence. In Intelligent
Robots and Systems (IROS), IEEE/RSJ International Conference on,
pages 5686–5693. IEEE, 2015.

[10] Pedro Pinies, Lina Maria Paz, and Paul Newman. Dense mono
reconstruction: Living with the pain of the plain plane. In Robotics and
Automation (ICRA), IEEE International Conference on, pages 5226–
5231. IEEE, 2015.

[11] Alejo Concha, Wajahat Hussain, Luis Montano, and Javier Civera.
Incorporating scene priors to dense monocular mapping. Autonomous
Robots, 39(3):279–292, 2015.

[12] Alex Flint, David Murray, and Ian Reid. Manhattan scene understand-
ing using monocular, stereo, and 3D features. In Computer Vision
(ICCV), IEEE International Conference on, pages 2228–2235. IEEE,
2011.

[13] Grace Tsai, Changhai Xu, Jingen Liu, and Benjamin Kuipers. Real-
time indoor scene understanding using Bayesian filtering with motion
cues. In Computer Vision (ICCV), 2011 IEEE International Confer-
ence on, pages 121–128. IEEE, 2011.

[14] Axel Furlan, Stephen Miller, Domenico G Sorrenti, Li Fei-Fei, and
Silvio Savarese. Free your camera: 3D indoor scene understanding
from arbitrary camera motion. In British Machine Vision Conference
(BMVC), page 9, 2013.

[15] Rafael Grompone von Gioi, Jeremie Jakubowicz, Jean-Michel Morel,
and Gregory Randall. LSD: A fast line segment detector with a false
detection control. IEEE Transactions on Pattern Analysis & Machine
Intelligence, (4):722–732, 2008.

[16] Andreas Krause and Daniel Golovin. Submodular function maximiza-
tion. Tractability: Practical Approaches to Hard Problems, 3:19, 2012.

[17] Richard Hartley and Andrew Zisserman. Multiple view geometry in
computer vision. Cambridge university press, 2003.

[18] Michael Kaess. Simultaneous localization and mapping with infinite
planes. In Robotics and Automation (ICRA), 2015 IEEE International
Conference on, pages 4605–4611. IEEE, 2015.

[19] Carsten Rother. A new approach to vanishing point detection in
architectural environments. Image and Vision Computing, 20(9):647–
655, 2002.

[20] Michael Kaess, Ananth Ranganathan, and Frank Dellaert. iSAM:
Incremental smoothing and mapping. Robotics, IEEE Transactions
on, 24(6):1365–1378, 2008.

[21] Yasuhiro Taguchi, Yong-Dian Jian, Srikumar Ramalingam, and Chen
Feng. Point-plane SLAM for hand-held 3D sensors. In Robotics and
Automation (ICRA), IEEE International Conference on, pages 5182–
5189. IEEE, 2013.

[22] Dorian Gálvez-López and Juan D Tardos. Bags of binary words for fast
place recognition in image sequences. Robotics, IEEE Transactions
on, 28(5):1188–1197, 2012.

[23] Jakob Engel, Jurgen Sturm, and Daniel Cremers. Semi-dense visual
odometry for a monocular camera. In Proceedings of the IEEE Inter-
national Conference on Computer Vision, pages 1449–1456, 2013.

[24] Jürgen Sturm, Nikolas Engelhard, Felix Endres, Wolfram Burgard,
and Daniel Cremers. A benchmark for the evaluation of RGB-D
SLAM systems. In Intelligent Robots and Systems (IROS), IEEE/RSJ
International Conference on, pages 573–580. IEEE, 2012.

	Introduction
	Related Work
	Single Image
	Multiple Images
	v-SLAM using points
	v-SLAM using planes
	Scene understanding

	Single Image Plane Pop-up
	Pop-up 3D Model
	Optimal Boundary Detection
	Pop-up World from an Arbitrary Pose
	Create 3D model
	Camera pose estimation

	Pop-up Plane Slam
	Planar SLAM Formulation
	Plane Measurement
	Data Association
	Loop Closure

	Point-Plane SLAM Fusion
	Depth Enhanced LSD SLAM
	LSD Pop-up SLAM

	Experiments and results
	TUM SLAM dataset
	Qualitative Comparison
	Quantitative Comparison

	Large Indoor Environment
	Corridor dataset I
	Corridor dataset II

	Runtime Analysis
	Discussion
	Height effect on map scale
	Ground effect on graph complexity

	Conclusions
	Submodular Edge Selection
	Monotonicity
	Submodularity
	Matroid constraint type
	Optimality

	References

