
1

CubeSLAM: Monocular 3D Object SLAM
Shichao Yang, Sebastian Scherer

Abstract—We present a method for single image 3D cuboid
object detection and multi-view object SLAM in both static and
dynamic environments, and demonstrate that the two parts can
improve each other. Firstly for single image object detection, we
generate high-quality cuboid proposals from 2D bounding boxes
and vanishing points sampling. The proposals are further scored
and selected based on the alignment with image edges. Secondly,
multi-view bundle adjustment with new object measurements is
proposed to jointly optimize poses of cameras, objects and points.
Objects can provide long-range geometric and scale constraints
to improve camera pose estimation and reduce monocular drift.
Instead of treating dynamic regions as outliers, we utilize object
representation and motion model constraints to improve the
camera pose estimation. The 3D detection experiments on SUN
RGBD and KITTI show better accuracy and robustness over
existing approaches. On the public TUM, KITTI odometry and
our own collected datasets, our SLAM method achieves the state-
of-the-art monocular camera pose estimation and at the same
time, improves the 3D object detection accuracy.

Index Terms—Simultaneous localization and mapping
(SLAM), object detection, dynamic SLAM, object SLAM

I. INTRODUCTION

OBJECT detection and Simultaneous localization and
mapping (SLAM) are two important tasks in computer

vision and robotics. For example, in autonomous driving, ve-
hicles need to be detected in 3D space in order to remain safe.
In augmented reality, 3D objects also need to be localized for
more realistic physical interactions. Different sensors can be
used for these tasks such as laser-range finders, stereo or RGB-
D cameras, which can directly provide depth measurement.
Alternatively, monocular cameras are attractive because of
their low cost and small size. Most of the existing monoc-
ular approaches solve object detection and SLAM separately
while also depend on prior object models which limit their
application to general environments. Therefore, we focus on
the general 3D object mapping problem by solving object
detection and multi-view object SLAM jointly in both static
and dynamic environments.

For object detection, many algorithms are able to detect
different 2D objects with various size and viewpoints in large
datasets using convolutional neural networks (CNNs) [1]. 3D
object objection is more challenging and has also attracted
attention recently, such as for vehicle detection [2, 3]. For
SLAM or Structure from Motion (SfM), the classic approach

Manuscript received September 11, 2018; revised January 13, 2019; ac-
cepted March 21, 2019. This paper was recommended for publication by
Editor Francois Chaumette upon evaluation of the reviewers comments. The
work was supported by the Amazon Research Award #2D-01038138.

The authors are with the Robotics Institute, Carnegie Mellon University,
Pittsburgh, PA, USA. Email of first author: {shichaoy@andrew.cmu.edu,
2013ysc@gmail.com}; Second author: basti@andrew.cmu.edu

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TRO.2019.2909168

(a)

(b)

Fig. 1: Monocular 3D object detection and mapping without
requiring prior object models. Mesh model is just for visual-
ization and not used for detection. (a) ICL NUIM data with
various objects, whose position, orientation and dimension are
optimized by SLAM. (b) KITTI 07. With object constraints,
our monocular SLAM can build a consistent map and reduce
scale drift, without loop closure and constant camera height
assumption.

is to track visual geometric features such as points [4], lines
[5], planes [6] across frames then minimize the reprojection
or photometric error through bundle adjustment (BA). How-
ever, apart from these low-level features in the environments,
objects are also important components which have not been
well explored in SLAM. Detecting and mapping 3D objects
can greatly improve robot intelligence for environment under-
standing and human-robot interaction. In addition, objects used
as SLAM landmarks can also provide additional semantic and
geometric constraints to improve camera pose estimation.

Most existing SLAM approaches assume the environment
to be static or mostly static. Features from dynamic regions
are often treated as outliers and not used for camera pose
estimation [4], however this assumption may not hold in many
practical environments. For example, there are many moving
vehicles and pedestrians on the road. It is also an important
task to detect and predict the trajectory of moving objects in
many applications.

In this work, we propose a system to combine 2D and
3D object detection with SLAM pose estimation together for
both static and dynamic environments. Given the detected 2D
object, many 3D cuboid proposals are efficiently generated
through vanishing point (VP) sampling, under the assump-
tions that the cuboid will fit 2D bounding box tightly after

2

projection. Then the selected cuboid proposals are further
optimized with points and cameras through multi-view BA.
Objects are utilized in two ways: to provide geometry and
scale constraints in BA, and to provide depth initialization
for points difficult to triangulate. The estimated camera poses
from SLAM are also used for single-view object detection.
Lastly in the dynamic case, instead of treating moving objects
as outliers, we jointly optimize the trajectories of camera and
objects based on dynamic point observation and motion model
constraints. In summary, our contributions are as follows:
• An efficient, accurate and robust single image 3D cuboid

detection approach without requiring prior object models.
• An object SLAM method with novel measurements be-

tween cameras, objects and points, that achieves better
pose estimation on many datasets including KITTI bench-
mark.

• Results demonstrating that object detection and SLAM
benefit each other.

• A method to utilize moving objects to improve pose
estimation in dynamic scenarios.

In the following, we first introduce the single image de-
tection in Sec. III, then explain the object SLAM in static
(Sec. IV) and dynamic environments (Sec. V), followed by
implementations in Sec. VI and experiments in Sec. VII and
Sec. VIII. Part of the code is public available 1.

II. RELATED WORK

A. Single image 3D object detection

3D object detection from a single image is much more chal-
lenging compared to 2D because more object pose variables
and the camera projective geometry need to be considered.
Existing 3D detection approaches can be divided into two
categories: with or without shape priors, such as CAD models.
With prior models, the best object pose to align with RGB
images can be found through keypoint Perspective n-Point
(PnP) matching [7], hand-crafted texture features [8] or more
recent deep networks [3, 9].

Without prior models, objects are usually represented by
cuboids. The typical approach is to combine geometry mod-
elling with learning. For example, objects can be generated
by a combination of Manhattan edges or rays through VPs
[10, 11]. Chen et al. proposed to exhaustively sample many
3D boxes on the ground then select based on various context
features [12]. Two similar work to us is [13, 14] which used
projective geometry to find cuboids to fit the 2D bounding box
tightly. We extend it to work without prediction of object size
and orientation.

B. Multi-view object SLAM

There are many point-based visual SLAM algorithms such
as ORB SLAM [4], and DSO [15], which can achieve im-
pressive results in general environments. Object-augmented
mapping is also explored in recent years. There are typically
two categories of them, either decoupled or coupled. The
decoupled approaches first build a SLAM point cloud map

1Some code available at https://github.com/shichaoy/cube slam

then further detect and optimize 3D object poses based on
point cloud clustering and semantic information [16]–[18]. It
showed improved results compared to 2D object detections,
however it didn’t change the SLAM part, thus the decoupled
approach may fail if SLAM cannot build a high quality map.

The coupled approach is usually called object-level SLAM.
Bao et al. proposed the first Semantic SfM to jointly optimize
camera poses, objects, points and planes [19]. Salas et al.
[20] proposed a practical SLAM system called SLAM++
using RGB-D cameras and prior object models. Frost et al.
represented objects as spheres to correct the scale drift of
monocular SLAM [21], similarly in [22]. Recently, a real
time monocular object SLAM using the prior object models
was proposed in [23]. Rubino et al. [24] solved multi-view
3D ellipsoid object localization analytically and QuadriSLAM
[25] extended it to an online SLAM without prior models.
Uncertain data association of object SLAM is addressed in
[26]. Yang et al. [27] proposed a similar idea to combine scene
understanding with SLAM but only applied to planes.

Recently, there is also some end-to-end deep learning-
based SLAM without object representations, such as DVSO
[28], DeepVO [29]. They have achieved great performance
on KITTI datasets, however, it is still unclear if they would
generalize to novel environments.

C. Dynamic environment SLAM

SLAM in dynamic environments has been a challeng-
ing problem. Most existing approaches treat dynamic region
features as outliers and only utilize static background for
pose estimation [4, 30, 31]. After the static SLAM problem
is solved, some other works additionally detect, track, and
optimize the trajectory of dynamic objects in order to build a
complete 3D map [14, 32, 33]. The optimization is based on
the object’s reprojection error, object motion model, and also
the point feature observations on the object. However, these
approaches are likely to fail in highly dynamic environments
due to the lack of reliable static background features.

There is a recent work utilizing dynamic point BA to
improve camera pose estimation, based on the rigid shape and
constant motion assumption [34], however, the paper showed
limited real dataset results and didn’t explicitly represent
objects in the map.

III. SINGLE IMAGE 3D OBJECT DETECTION

A. 3D box proposal generation

1) Principles: Instead of randomly sampling object pro-
posals in 3D space, we utilize the 2D bounding box to
efficiently generate 3D cuboid proposals. A general 3D cuboid
can be represented by 9 DoF parameters: 3 DoF position
t = [tx, ty, tz], 3 DoF rotation R and 3 DoF dimension
d = [dx, dy, dz]. The cuboid coordinate frame is built at the
cuboid center, aligned with the main axes. The camera intrinsic
calibration matrix K is also known. Based on the assumptions
that the cuboid’s projected corners should fit the 2D bounding
box tightly, there are only four constraints corresponding to
four sides of the 2D box, therefore, it is not possible fully
constrain all 9 parameters. Other information is needed for

https://github.com/shichaoy/cube_slam

3

example the provided or predicted object dimensions and
orientations used in many vehicle detection algorithms [12]–
[14]. Rather than relying on the predicted dimensions, we
utilize the VP to change and reduce the regression parameters
in order to work for general objects.

The VP is the parallel lines’ intersection after projection
onto perspective images [35]. A 3D cuboid has three orthog-
onal axes and can form three VPs after projections depending
on object rotation R wrt. camera frame and calibration matrix
K:

VPi = KRcol(i), i ∈ {1, 2, 3} (1)

where Rcol(i) is the ith column of R.
2) Get 2D corners from the VP: We first show how to

get eight 2D cuboid corners based on the VP. Since at most
three cuboid faces can be observed simultaneously, we can
divide the cuboid configurations into three common categories
based on the number of observable faces shown in Fig. 2. Each
configuration can be left-right symmetric. Here we explain
Fig. 2(a) in more detail. Suppose three VPs and top corner
p1 are known or estimated, and × represents the intersection
of two lines, then p2 = (VP1, p1)× (B,C), similarly for p4.
p3 = (VP1, p4)×(VP2, p2), p5 = (VP3, p3)×(C,D), similarly
for the remaining corners.

3) Get 3D box pose from 2D corners: After we get the
cuboid corners in 2D image space, we need to estimate the
cuboid’s 3D corners and pose. We divide the objects into two
scenarios.

Arbitrary pose objects: We use PnP solver to solve
the general cuboid’s 3D position and dimensions up to a
scale factor due to the monocular scale ambiguity. Math-
ematically, the cuboid’s eight 3D corners in the object
frame are [±dx,±dy,±dz] /2 and in the camera frame are:
R [±dx,±dy,±dz] /2+t. As shown in Fig. 2(a), we can select
four adjacent corners such as 1,2,4,7, which can be projected
from the above 3D corners for example corner 1:

p1 = π (R [dx, dy, dz] /2 + t)) (2)

π is the camera projective function and pi (i = 1, 2...8) is
one of the eight 2D object corners. Each corner provides two
constraints thus four corners can fully constrain the object pose
(9 Dof) except the scale. Iterative or non-iterative PnP solvers
can be found in [35].

Ground objects: For ground objects lying on the ground
plane, we can further simplify the above the process and
get the scale factor more easily. We build the world frame
on the ground plane then object’s roll/pitch angle is zero.
Similar to the previous section, we can get eight 2D corners
from VP. Then instead of using the complicated PnP solver
in Equation 2, we can directly back-project ground corner
pixels to the 3D ground plane and subsequently compute other
vertical corners to form a 3D cuboid. This approach is very
efficient and has analytical expressions. For example for corner
5 on the 3D ground plane expressed by [n,m] (normal and
distance in camera frame), the corresponding 3D corner P5 is

(a) Three faces (c) One face

VP3

VP2VP1

VP1 VP2

VP3

1

4 2
3

5

8 6
7

A B

CD

(b) Two faces

VP1 VP2

VP3

Fig. 2: Cuboid proposals generation from 2D object box. If
vanishing points and one corner are estimated, the other seven
corners can also be computed analytically. For example in (a),
given corner 1, corner 2 and 4 can be determined through line
intersection, and same as other corners.

the intersection of backprojected ray K−1p5 with the ground
plane:

P5 =
−m

n>(K−1p5)
K−1p5 (3)

Similarly, a more detailed projection process is explained in
the [27]. The scale is determined by the camera height in the
projection process.

4) Sample VP and Summary: From the analysis in the
previous two sections, the box estimation problem changes
to how to get three VPs and one top 2D corner, because after
we get the VP, we can use Sec. III-A2 to compute 2D corners,
then use Sec. III-A3 to compute 3D box.

From Equation 1, VP is determined by object rotation
matrix R. Though deep networks can be used to directly
predict them with large amounts of data training, we choose to
sample them manually then score (rank) them for the purpose
of generalizability.

For general objects, we need to sample the full rotation
matrix R, however for ground objects, camera’s roll/pitch
and object’s yaw are used and sampled to compute R. More
importantly, in datasets such as SUN RGBD or KITTI, camera
roll/pitch are already provided. For mutli-view video data, we
use SLAM to estimate camera poses. Therefore the sampling
space is greatly reduced and also becomes more accurate. In
this paper’s experiments, we only consider ground objects.

B. Proposal scoring

After sampling many cuboid proposals, we define cost
functions to score them as shown in Fig. 3. Different functions
have been proposed such as semantic segmentation [12], edge
distance [8], HOG features [10]. We propose some fast and
effective cost functions to align the cuboid with image edge
features. This approach works best for “boxy with clear edge”
objects, but also works decently well for bicycles and toilets
etc. as shown in later experiments due to constraints from VP
and robust edge filtering. We first denote the image as I and
cuboid proposal as O = {R, t,d} defined in Sec. III-A1, then
the cost function is defined as:

E(O|I) = φdist(O, I) +w1φangle(O, I) +w2φshape(O) (4)

4

Fig. 3: Cuboid proposal scoring. (Left) Edges used to score the
proposals. (Right) Cuboid proposals generated from the same
2D cyan bounding box. The top left is the best and bottom
right is the worst after scoring.

where φdist, φangle, φshape are three kinds of costs which will
be explained as follows. w1 and w2 are weight parameters
between different costs. We set w1 = 0.8, w2 = 1.5 after
manual search on small sample datasets.

1) Distance error φdist(O, I): The 2D cuboid edges should
match with the actual image edges. We first detect Canny
edges and build a distance transform map based on them. Then
for each visible cuboid edge (solid blue line in Fig. 2(a)), we
evenly sample 10 points on it and summarize all the distance
map value divided by the 2D box’s diagonal. This is similar
to the Chamfer distance [10].

2) Angle alignment error φangle(O, I): The distance error
is sensitive to the noisy false positive edges such as object
surface textures. Therefore, we also detect long line segments
[36] (shown as the green lines in Fig. 3) and measure whether
their angles align with vanishing points. These lines are first
associated with one of three VPs based on the point-line
support relationship [11]. Then for each VPi, we can find
two outmost line segments with the smallest and largest slope
denoted as 〈li ms, li mt〉 and 〈li ns, li nt〉 respectively. 〈a, b〉
represents the slope angle of a line with two endpoints a, b.
Finally the angle alignment error is:

φangle(O, I) =
∑
i=1:3

‖〈li ms, li mt〉 − 〈VPi, li mt〉‖+

‖〈li ns, li nt〉 − 〈VPi, li nt〉‖
(5)

3) Shape error φshape(O): The previous two costs can be
evaluated efficiently just in 2D image space. However, similar
2D cuboid corners might generate quite different 3D cuboids.
We add a cost to penalize the cuboids with a large skew
(length/width) ratio. More strict priors could be applied for
example the estimated or fixed dimensions of specific types
of objects.

φshape(O) = max(s− σ, 0) (6)

where s = max(dx/dy, dy/dx) is the object skew ratio and
σ is a threshold set be 1 in our experiments. If s < σ, no
penalty is applied.

IV. OBJECT SLAM
We extend the single image 3D object detection to multi-

view object SLAM to jointly optimize object pose and camera

pose. The system is built on feature point-based ORB SLAM2
[4], which includes the front-end of camera tracking and back-
end of BA. Our main change is the modified BA to include
objects, points and camera poses together, which will be ex-
plained in detail in this section. Other SLAM implementation
details are in Sec. VI-B. Static objects are used in this section
and dynamic objects are addressed in the next section.

A. Bundle Adjustment Formulation

BA is the process to jointly optimize different map com-
ponents such as camera poses and points [4] [15]. Points
are also used in most of our experiments because objects
alone usually cannot fully constrain camera poses. If we
denote the set of camera poses, 3D cuboids and points as
C = {Ci}, O = {Oj}, P = {Pk} respectively, BA can be
formulated as a nonlinear least squares optimization problem:

C∗, O∗, P ∗ =arg min
{C,O,P}

∑
Ci,Oj ,Pk

‖ e(ci, oj) ‖2Σij
+

‖ e(ci, pk) ‖2Σik
+ ‖ e(oj , pk) ‖2Σjk

(7)

where e(c, o), e(c, p), e(o, p) represents the measurement error
of camera-object, camera-point, object-point respectively. Σ is
covariance matrix of different error measurements. Definitions
of variables and errors are in the following. Then the optimiza-
tion problem can be solved by Gauss-newton or Levenberg-
Marquardt algorithm available in many libraries such as g2o
[37] and iSAM [38].

Notations: Camera poses are represented by Tc ∈ SE(3) and
points are represented by P ∈ R3. As explained in Section
III-A1, cuboid objects are modelled as 9 DoF parameters:
O = {To,d} where To = [R t] ∈ SE(3) is 6 DoF pose,
and d ∈ R3 is the cuboid dimension. In some environments
such as KITTI, we can also use the provided object dimension
then d is not needed to optimize. Subscript m indicates the
measurement. The coordinate system is shown in Fig. 4(b).

B. Measurement Errors

1) Camera-Object measurement: We propose two kinds of
measurement errors between objects and cameras.

a) 3D measurements: The first is 3D measurement uti-
lized when the 3D object detection is accurate for example
if a RGBD sensor is used. The detected object pose Om =
(Tom,dm) from single image detection in Section III-A serves
as the object measurement from the camera frame. To compute
its measurement error, we transform the landmark object to the
camera frame then compare with the measurement:

eco 3D = [log
(
(T−1

c To)T−1
om

)∨
se3

d− dm] (8)

where log maps the SE3 error into 6 DoF tangent vector
space, therefore eco 3D ∈ R9. Huber robust cost function is
applied to all measurement errors to improve the robustness
[4].

We need to note that, without prior object models, our
image-based cuboid detection cannot differentiate between the
front or back of objects. For example, we can represent the

5

3D object detection Camera tracking

Bundle adjustment

Input

Images

Cuboids

Depth Initialization

Camera pose

(a)

(b)

Fig. 4: (a) Our object SLAM pipeline. Single view object
detection provides cuboid landmark and depth initialization
for SLAM while SLAM can estimate camera pose for more
accurate object detection. (b) Showing the coordinate system
and measurement errors between cameras, objects and points
during BA.

same cuboid by rotating the object coordinate frame by 90◦

and swapping length with width value. Therefore, we need to
rotate along the height direction for 0,±90◦, 180◦ to find the
smallest error in Eq. 8.

b) 2D measurements: For the 2D measurement, we
project the cuboid landmark onto the image plane to get the
2D bounding box shown as the red rectangle in Fig. 4(b) then
compare it with the blue detected 2D bounding box. In more
detail, we project the eight corners onto the image and find
the min and max of the projected pixels’ x y coordinates to
form a rectangle:

[u, v]min = min{π (R [±dx,±dy,±dz] /2 + t))}
[u, v]max = max{π (R [±dx,±dy,±dz] /2 + t))}

c = ([u, v]min + [u, v]max)/2

s = [u, v]max − [u, v]min

(9)

where [u, v]min,max are the min/max xy coordinates of all
eight projected corners, namely the top left and bottom right
corners of projected rectangle. c and s is the center and size
of the 2D box. Both of them are two dimensional vectors
therefore [c, s] ∈ R4. The 4D rectangle error is then defined
as:

eco 2D = [c, s]− [cm, sm] (10)

This measurement error has much less uncertainty compared
to the 3D error in Eq. 8 because 2D object detection is
usually more accurate compared to 3D detection. This is
similar to projecting map points onto images to formulate

reprojection error. However it also loses information after
projection because many different 3D cuboids can project to
the same 2D rectangle, thus more observations are needed to
fully constrain the camera poses and cuboids.

Modelling and estimating the error covariance Σ or hessian
matrix W is not straightforward compared to points due to
the complicated detection process. Therefore we simply give
more weights to the semantic confident and geometric close
objects. Suppose the cuboid-camera distance is d and the
object’s 2D detection probability is p, then we can define
w = p × max(70 − d, 0)/50 on KITTI data, where 70m
is truncation distance. Parameters may vary with different
datasets.

2) Object-point measurement: Points and objects can pro-
vide constraints for each other. If point P belongs to an object
shown in Fig. 4(b), it should lie inside the 3D cuboid. So we
first transform the point to the cuboid frame then compare
with cuboid dimensions to get three dimensional error:

eop = max(|T−1
o P | − dm,0) (11)

where max operator is used because we only encourage points
to lie inside cuboid instead of exactly on surfaces.

3) Camera-point measurement: We use the standard 3D
point re-projection error in feature-based SLAM [4].

ecp = π(T−1
c P)− zm (12)

where zm is the observed pixel coordinate of 3D point P .

C. Data association

Data association across frames is another important part
of SLAM. Compared to point matching, object association
seems to be easier as more texture is contained and many 2D
object tracking or template matching approaches can be used.
Even 2D box overlapping can work in some simple scenarios.
However, these approaches are not robust if there is severe
object occlusion with repeated objects as shown in Fig. 5. In
addition, dynamic objects need to be detected and removed
from current SLAM optimization but standard object tracking
approaches cannot classify whether it is static or not, unless
specific motion segmentation is used.

We thus propose another method for object association
based on feature point matching. For many point based SLAM
methods [4], feature points in different views can be effectively
matched through descriptor matching and epipolar geometry
checking. Therefore we first associate feature points to their
corresponding object if points are observed in the 2D object
bounding box for at least two frames and their 3D distance
to the cuboid center is less than 1m. For example in Fig. 5,
the feature points have the same color with their associated
object. Note that this object-point association is also used
when computing object-point measurement error during BA
in Eq. 11. Finally, we match two objects in different frames if
they have the most number of shared feature points between
each other and the number also exceeds certain threshold
(10 in our implementation). Through our experiments, this
approach works well for wide baseline matching, repetitive
objects and occlusions. The dynamic feature points belonging

6

Fig. 5: Object association in the dynamic and occluded scenar-
ios of KITTI 07. Green points are the non-object points, and
points in other colors are associated with objects of the same
color. The front cyan moving car is not added as a SLAM
landmark as no feature point is associated with it. Points in
object overlapping areas are not associated with any object
due to ambiguity.

to moving objects are discarded because they cannot fulfill
the epipolar constraint. Therefore, objects with few associated
feature points are considered as dynamic objects for example
the front cyan car in Fig. 5.

V. DYNAMIC SLAM

The previous section deals with the static object SLAM. In
this section, we propose an approach to jointly estimate the
camera pose and dynamic object trajectories. Our approach
makes some assumptions about the objects to reduce the
number of unknowns and make the problem solvable. The two
commonly used assumptions are that the object is rigid and
follows some physically feasible motion model. The rigid body
assumption indicates that a point’s position on its associated
object doesn’t change over time. This allows us to utilize
the standard 3D map point reprojection error to optimize its
position. For the motion model, the simplest form is constant
motion model with uniform velocity. For some specific object
such as vehicles, it is additionally constrained to follow the
nonholonomic wheel model (with some side-slip).

A. Notations

We define some new map elements in addition to the static
SLAM in Sec. IV-A. For the dynamic object Oi, we need
to estimate its pose jOi in each observed frame j. We use
“dynamic points” to refer to feature points associated with
moving objects. For dynamic point P k on moving object Oi,
we represent its position anchored on the object as iP k, which
is fixed based on the rigidity assumption. Its world pose will
change over time and is not suitable for SLAM optimization.

B. SLAM optimization

The factor graph of the dynamic object estimation is shown
in Fig. 6. Blue nodes are the static SLAM components while
the red ones represent the dynamic objects, points and motion
velocity. The green squares are the measurement factors in-
cluding the camera-object factor in Eq. 10, the object-velocity
factor in Eq. 14, and the point-camera-object factor in Eq. 15
which will be explained as follows. With these factors, camera
poses can also be constrained by the dynamic elements.

static point

dynamic object

camera

dynamic point

velocity

Fig. 6: Dynamic object SLAM. Blue nodes represent the
static SLAM component and red ones represent new dynamic
variables. The green squares are the new factors of dynamic
map including motion model constraints and observations of
objects and points.

1) Object motion model: The general 3D object motion can
be represented by a pose transformation matrix T ∈ SE(3).
We can apply T to the previous pose then compute pose error
with the current pose. Here, we adopt a more restricted non-
holonomic wheel model [39] that is also used in other dynamic
vehicle tracking work [14]. Car motion is represented by linear
velocity v and steering angle φ. Suppose the vehicle moves on
a local planar surface approximately, then object roll/pitch=0
and translation in z axis tz = 0. Only tx, ty, θ (heading yaw) is
needed to represent its full state To = [R(θ) [tx, ty, 0]′]. The
predicted state from velocity is:t′xt′y

θ′

 =

txty
θ

+ v∆t

 cos(θ)
sin(θ)

tan(φ)/L

 (13)

where L is the distance between the front and rear wheel
center. Note that this model requires that x, y, θ is defined
at the rear wheel center while our object frame is defined at
the vehicle center. The two coordinate frames have L/2 offset
that needs to be compensated. The final motion model error
is simply as:

emo = [t′x, t
′
y, θ
′]− [tx, ty, θ] (14)

2) Dynamic point observation: As explained before, the
dynamic point is anchored to its associated object, so it is
first transformed to the world frame then projected onto the
camera. Suppose the local position of kth point on ith object
is iP k and the object pose in the jth image is jT i

o , then the
point’s reprojection error is:

edp = π(jT i
o
iP k, T j

c)− zkj (15)

where T j
c is the jth camera pose and zkj is the observed pixel

of this point.

C. Dynamic data association

Through the experiments, we find that the association
method for static environments in Section IV-C is not suitable
for the dynamic cases due to the difficulty in matching

7

dynamic point features. The typical way to track a feature
point is to predict its projected position, search nearby features
match descriptors then check epipolar geometry constraints
[4]. However, for monocular dynamic cases, it is difficult to
accurately predict the movement of objects and points and the
epipolar geometry is also not accurate when object motion is
inaccurate.

Thus, we designed different approaches for the point and ob-
ject association. The feature points are directly tracked by the
2D KLT sparse optical flow algorithm, which doesn’t require
the 3D point position. After pixel tracking, the 3D position of
the dynamic features will be triangulated considering the ob-
ject movement. Mathematically, suppose the projection matrix
of two frames are M1,M2. The 3D point positions in these two
frames are P1, P2 and corresponding pixel observations are
z1, z2. The object movement transformation matrix between
two frames is ∆T , then we can infer that P2 = ∆TP1. Based
on projection rule, we have:

M1P1 = z1

M2∆TP1 = z2

(16)

If we treat M2∆T as a modified camera pose compensating
object movement, the above equation is the standard two-view
triangulation problem [35] that can be solved by SVD.

KLT tracking might still fail when the pixel displacement is
large, for example when another vehicle comes close and to-
wards the camera. Therefore, for the dynamic object tracking,
we do not utilize the shared feature point matching approach
in Sec. IV-C. Instead, we directly utilize visual object tracking
algorithm [40]. The object’s 2D bounding box is tracked and
its position is predicted from the previous frame, then it is
matched to the detected bounding box in the current frame
with the largest overlapping ratio.

VI. IMPLEMENTATIONS

A. Object detection

For the 2D object detection, we use the YOLO detector [41]
with a probability threshold of 0.25 for indoor scenarios and
MS-CNN [42] with a probability of 0.5 for outdoor KITTI.
Both run in real time on a GPU.

If an accurate camera pose is known for example in the
SUN RGBD dataset, we only need to sample the object yaw
to compute the VPs as explained in Section III-A4. Fifteen
samples of the object yaw in a range of 90◦ are generated
as cuboids can be rotated as mentioned in Section IV-B1.
Then ten points are sampled on the top edge of the 2D
bounding box. Note that not all the samples can form valid
cuboid proposals, as some cuboid corners might lie outside of
the 2D box. In scenarios with no ground truth camera pose
provided, we sample camera roll/pitch in a range of ±20◦

around the initially estimated angle. For single images with no
prior information, we simply estimate that camera is parallel to
ground. For multi-view scenarios, SLAM is used to estimate
the camera pose. One advantage of our approach is that it
doesn’t require large training data as we only need to tune
the two cost weights in Eq. 4. It can also run in real time,
including the 2D object detection and edge detection.

B. Object SLAM

The pipeline of the whole SLAM algorithm is shown in
Fig. 4(a). As mentioned in Sec. IV, our system is based on
ORB SLAM2 and we didn’t change the camera tracking and
keyframe creation modules. For the newly created keyframe,
we detect the cuboid objects, associate them, then perform
bundle adjustment with camera poses and points. For the
dynamic objects, we can choose to reconstruct or ignore
them depending on different tasks. The cuboid is also used
to initialize the depth for feature points that are difficult to
triangulate when stereo baseline or parallax angle is smaller
than a threshold. This can improve the robustness in some
challenging scenarios such as large camera rotations as demon-
strated in the experiments. Since the number of objects is
far less than points, object association and BA optimization
runs efficiently in real time. To get an absolute map scale
for monocular SLAM, the initial frame’s camera height is
provided to scale the map. Note that our object SLAM can
also work independently without points. In some demon-
strated challenging environments with few feature points, ORB
SLAM cannot work, but our algorithm can still estimate
camera poses using only the object-camera measurement.

There are different costs in the optimization (see in Sec. IV)
and some of them are in pixel space for example Eq. 10 while
some are in Euclidean space such as Eq. 8 and 11, therefore
it is necessary to tune the weights between them. Since it is
difficult to analyze the cuboid detection uncertainty, we mainly
hand-tune the object cost weights by inspecting the number
and magnitude of measurement so that different types of
measurements contribute roughly the same. For example, there
are only a few objects compared to points but their reprojection
error in Eq. 10 is much larger compared to points. From our
experiments, object-camera and point-camera measurements
have similar weights.

C. Dynamic object

The implementation of dynamic objects mostly follows the
previous section with some difference. The constant motion
model assumption may not hold for practical datasets because
objects may accelerate and decelerate (for example in Fig.
13). Through the ground truth object velocity analysis, we find
that the velocity roughly stays the same in about 5 seconds.
Therefore, in our SLAM, motion model constraint is only
applied to observations in the last 5 seconds.

VII. EXPERIMENTS - SINGLE VIEW DETECTION

The SUN RGBD [43] and KITTI object [44] data with
ground truth 3D bounding box annotations are used for single
view object detection evaluation. 3D intersection over union
(IoU) and average precision (AP) is adopted as the evaluation
metric instead of only rotation or viewpoint evaluation in many
other works. As there is no depth data, the 3D IoU threshold
for a correct detection is adjusted to 25% [12, 43]. Since our
approach doesn’t depend on the prior object model, in order
to get an absolute scale of object position and dimensions, we
only evaluate the ground objects with known camera height as
explained in Sec. III-A. For the KITTI dataset, this assumption

8

Num of proposals

10 0 10 1 10 2 10 3

3
D

 r
e

c
a

ll

0

0.2

0.4

0.6

0.8

1

0.7 2D IoU

0.6

0.5

0.4

0.3

0.2

(a)

10 1 10 2 10 3 10 4

Num of proposals

0

0.2

0.4

0.6

0.8

1

3
D

 R
e
c
a
ll

Our w/ scoring

Our w/o scoring

Stereo 3DOP

Mono3d

(b)

Fig. 7: (a) 3D proposal recall on SUN RGBD Subset dataset.
Different lines correspond to different 2D box IoU for associ-
ation. (b) 3D proposal recall on KITTI dataset. Our approach
can get higher recall with fewer proposals.

is already satisfied. The commonly used training and validation
index split by [2, 13] is used. For the SUN RGBD dataset, we
select 1670 images with a visible ground plane and ground
objects fully in the field of view.

A. Proposal Recall

We first evaluate the quality of proposal generation in SUN
RGBD. It is obvious that if the 2D bounding box is inaccurate,
our 3D cuboid accuracy will also be affected. This effect is
analyzed by evaluating the 3D recall on objects with a 2D IoU
greater than a threshold τ , as shown in Fig. 7(a). As expected,
a larger τ leads to a higher 3D recall. Our approach can
achieve 3D recall of 90% using around 50 cuboid proposals
when 2D IoU is 0.6.

We then evaluate and compare the proposal quality on the
KITTI dataset shown in Fig. 7(b). Since Mono3d [12] and
3DoP [45] utilize different validation indexes compared to us,
we only evaluate on the common images (1848). From our
tests, different image indexes only lead to small result changes.
Results of other algorithms are taken from their paper. Note
that Mono3d first exhaustively samples huge amounts of
cuboid proposals (∼14k), and then reports the recall after
scoring and selecting the top proposals based on semantic
and instance segmentation. Therefore, we also evaluate the
recall before and after scoring. Before scoring (green line), our

TABLE I: Comparison of 3D Object Detection on SUN RGBD
Subset and KITTI Dataset

Method 3D IoU AP
Primitive [10] 0.36 0.27

SUN 3dgp [46] 0.42 0.22
RGBD Ours 0.39 0.27

Ours* 0.45 0.30

KITTI

Deep3D [13] 0.33 0.69
SubCNN [2] 0.21 0.17
Mono3D [12] 0.22 0.27

Ours 0.21 0.29
Ours top 10 0.38 0.75

* On 3dgp detected images.

Fig. 8: Single image 3D object detection examples in SUN
RGBD and KITTI dataset.

approach can reach a recall of 90% with 800 raw proposals
per image, about 200 proposals per object. After scoring (red
line), we can reach the same recall using just 20 proposals,
much fewer compared to [12]. There are two main reasons
for this. First, our 3D proposals are of high quality because
they are guaranteed to match the 2D detected box. Second,
our more effective scoring function. Note our approach has
an upper limit as shown in Fig. 7(b) because the 2D detector
might miss some objects.

B. Final detection

We then evaluate the final accuracy of the best selected
proposal. To the best of our knowledge, there is no trained 3D
detection algorithm in SUN RGBD. Therefore, we compared
with two public approaches, SUN primitive [10] and 3D
Geometric Phrases (3dgp) [46]. Both of which are model based
algorithms like ours. Additionally, 3dgp uses fixed prior object
models. We modify their code to use the actual camera pose
and calibration matrix when detecting and unprojecting to 3D
space.

For 3D IoU evaluation, in order to eliminate the effect of
2D detector, we only evaluate 3D IoU for objects with 2D
rectangle IoU> 0.7. As shown in Table I and Fig. 8, our
approach can generate many more accurate cuboids. Other
approaches [10, 46] can only detect around 200 cuboids in

9

the SUN RGBD subset datasets while our algorithm detects
ten times more. Our mean 3D object IoU is smaller compared
3dgp using prior models, but higher if we only evaluate on the
same detected images (≈200) by 3dgp. Similarly for average
precision, we evaluate other methods only on the images where
they detect 3D objects, otherwise their AP value will be very
low (<5%) compared to our 27% on the whole dataset.

On the KITTI dataset, we compare with other monocular
algorithms [2, 12, 13] using deep networks. SubCNN ad-
ditionally uses prior models. Prediction results are provided
by their authors. AP is evaluated on the moderate car class.
From Table I, our approach performs similarly to SubCNN and
Mono3d. As SubCNN generates many false positive detections
therefore their AP value is low. The best performing approach
is Deep3D [13] which directly predicts vehicle orientations
and dimension using deep networks. As there is only one
object class “car” with fixed camera poses and object shapes,
CNN prediction works better than our hand-designed features.
The last row is the evaluation of our selected top ten cuboid
proposals to show that our proposal generation part can still
generate high quality proposals.

VIII. EXPERIMENTS - OBJECT SLAM

We then evaluate the performance of object SLAM, in-
cluding camera pose estimation, and 3D object IoU after BA
optimization. We show that SLAM and object detection can
benefit each other in various datasets. Root mean squared error
(RMSE) [47] and KITTI translation error [44] are used to
evaluate the camera pose. Note, even though our algorithm
is monocular SLAM, we can get the map scale from the
first frame’s camera height, therefore, we directly evaluate the
absolute trajectory error without aligning it in scale. To better
evaluate the monocular pose drift, we turn off the loop closure
module in ORB SLAM when using and comparing with it.

A. TUM RGBD and ICL-NUIM dataset

These datasets [47, 48] have ground truth camera pose
trajectory for evaluation. We only use the RGB images for the
SLAM algorithm. For ground truth of the objects, 3D cuboids
are manually labeled in a registered global point cloud from
the depth images.

We first test on TUM fr3 cabinet, shown in Fig. 9 which
is a challenging low texture dataset, and existing monocular
SLAM algorithms all fail on it due to few point features.
The object is the only SLAM landmark and the 3D object-
camera measurement in Sec. IV-B1 is used because it can
provide more constraints than 2D measurement. The left of
Fig. 9 shows our online detected cuboid in some frames
using estimated camera pose from SLAM. There is clearly
large detection error in the bottom image. After multi-view
optimization, the red cube in the map almost matches with
the ground truth point cloud. From row “fr3/cabinet” in Table.
II, 3D object IoU is improved from 0.46 to 0.64 after SLAM
optimization compared to the single image cuboid detection.
The absolute camera pose error is 0.17m.

We then test on the ICL living room dataset which is a
general feature rich scenario. Since there is no absolute scale

Fig. 9: Object SLAM on TUM fr3 cabinet. Red cube is the
optimized object landmark, matching well with the ground
truth point cloud. Red and green trajectories are the predicted
and ground truth camera paths. Existing SLAM algorithms
fail on this dataset due to low texture. Only object is used in
SLAM.

TABLE II: Object Detection and SLAM Result on Indoor
Datasets

Dataset Object IoU Pose error (m)
single view after BA DSO * ORB * Our

fr3 cabinet 0.46 0.64 — — 0.17
ICL room2 0.33 0.49 0.01 0.02 0.03
Two Chair 0.37 0.58 0.01 — 0.01
Rot Chair 0.35 0.50 — — 0.05

* Pose error with scale alignment.

for monocular DSO or ORB SLAM, we compute their pose
error after scale alignment [15]. We improve the object de-
tection accuracy while sacrificing some camera pose accuracy
due to imperfect object measurements. As can be seen from
the mapping result of ICL data in Fig. 1(a), our approach is
able to detect different objects including sofas, chairs, and pot-
plant demonstrating the advantage of our 3D detection without
prior models.

B. Collected chair dataset

We collect two chair datasets using a Kinect RGBD camera
shown in Fig. 10. The RGBD ORB SLAM result is used as
the ground truth camera poses. The second dataset contains
large camera rotation which is challenging for most monocular
SLAM. As shown in Fig. 10(a), after optimization, cuboids
can fit the associated 3D points tightly showing that object
and point estimation benefit each other. The quantitative error
is shown in the bottom two rows of Table. II. DSO is able to
work in the first dataset but performs poorly in the second
one, due to the large camera rotation. Mono ORB SLAM
fails to initialize in both cases while our cuboid detection
can provide depth initialization for points even from a single
image. Similar as before, the 3D object IoU is also improved
after BA.

C. KITTI Dataset

We tested on two of the KITTI datasets, the short sequence,
with provided ground truth object annotations, and the long
sequence, which is a standard odometry benchmark without
object annotations. The 2D object-camera measurement in

10

TABLE III: Object Detection and Camera Pose Estimation on KITTI Raw Sequence

Seq 22 23 36 39 61 64 93 95 96 117 Mean

Object
3D IoU

Single view [13] 0.52 0.32 0.50 0.54 0.54 0.43 0.43 0.40 0.26 0.25 0.42
Ours before BA 0.55 0.36 0.49 0.56 0.54 0.42 0.46 0.49 0.20 0.30 0.44

Ours 0.58 0.35 0.54 0.59 0.50 0.48 0.45 0.52 0.29 0.35 0.47
Trans ORB -No LC 13.0 1.17 7.08 6.76 1.06 7.07 4.40 0.86 3.96 4.10 4.95

error(%) Ours 1.68 1.72 2.93 1.61 1.24 0.93 0.60 1.49 1.81 2.21 1.62

TABLE IV: Camera Pose Estimation Error on KITTI Odometry Benchmark

Seq 0 2 3 4 5 6 7 8 9 10 Mean

Trans
Error
(%)

Ground
based

[49] 4.42 4.77 8.49 6.21 5.44 6.51 6.23 8.23 9.08 9.11 6.86
[50] 2.04 1.50 3.37 1.43 2.19 2.09 — 2.37 1.76 2.12 2.03
Ours 1.83 2.11 2.55 1.68 2.45 6.31 5.88 4.2 3.37 3.48 3.39

Object [22] 3.09 6.18 3.39 32.9 4.47 12.5 2.81 4.11 11.2 16.8 9.75
based Ours 2.40 4.25 2.87 1.12 1.64 3.20 1.63 2.79 3.16 4.34 2.74

Combined Ours 1.97 2.48 1.62 1.12 1.64 2.26 1.63 2.05 1.66 1.46 1.78

RMSE Object [21] 73.4 55.5 30.6 10.7 50.8 73.1 47.1 72.2 31.2 53.5 49.8
(m) based Ours 13.9 26.2 3.79 1.10 4.75 6.98 2.67 10.7 10.7 8.37 8.91

(a)

(b)

Fig. 10: Collected chair datasets. (a) Objects fit tightly with
the associated points after BA optimization. (b) Objects can
improve camera pose estimation when there is large camera
rotation.

Sec. IV-B1 is used for BA because of its low uncertainty
compared to 3D measurements for vehicle detection. We also
scale ORB SLAM’s initial map by the first frame camera
height (1.7m in our implementations) in order to evaluate
its absolute pose error. In Fig. 11, we can observe that the
initial trajectory segment before first turning matches well with
ground truth, indicating the initial map scaling for ORB is
correct. For KITTI dataset, we additionally initialize object
dimension using prior car size (w = 3.9, l = 1.6, h = 1.5 in
our implementation) to maintain long-term scale consistency,
which is also used in other object SLAM works [21, 22]. This
is especially useful when objects are not observed frequently
in some sequence.

1) KITTI raw sequence: We select 10 KITTI raw sequences
with the most number of ground truth object annotations
named “2011 0926 00xx”. The ground truth camera pose is

from the provided GPS/INS poses on KITTI. For the object
IoU, we compare three methods. The first is the single image
cuboid detection [13]. The second is the object pose just
using SLAM data association between frames, shown as row
“Ours before BA”. For example, if an object in one frame is
far away, the 3D detection may be inaccurate but in another
frame, the same object is closer thus the 3D detection becomes
more accurate. Therefore, data association with correct camera
pose estimation should also improve 3D detection. Thirdly, the
object poses after our final BA optimization are also evaluated
shown as row “Ours”.

As shown in the top three rows of Table III, object accuracy
is increased after data association and BA optimization in most
of the sequences, however, in some sequences, due to local
position drift, the object IoU may also decrease a bit. For
camera pose estimation, object SLAM can provide geometry
constraints to reduce the scale drift of monocular SLAM.
Note that since most KITTI raw sequences don’t have loops,
disabling or enabling the ORB SLAM loop closure module
does not make a difference.

2) KITTI odometry benchmark: Most existing monocular
SLAMs use a constant ground plane height assumption on the
benchmark to reduce monocular scale drift [49, 50]. Recently,
there are also some object based scale recovery approaches
[21, 22]. Their results are directly taken from their papers.
Similar to other approaches, we didn’t compare with ORB
SLAM in this case, as without loop closure, it cannot recover
scale in the long sequence and has significant drift error shown
in Fig. 11. As shown in Table IV, our object SLAM achieves
2.74 % translation error and performs much better than other
SLAM using objects. This is because they represent vehicles as
spheres or only use vehicle height information, which is not as
accurate as our cuboid BA. Our algorithm is also comparable
to ground-based scaling approaches. Visualization of some
object mapping and pose estimation are shown in Fig. 1(b) and
Fig. 11, where we can see that our approach greatly reduces
monocular scale drift.

Our object SLAM performs worse in some sequences such

11

-200

 0

 200

 400

 600

-400 -200 0 200 400

(a) Sequence 00

-200

-100

 0

 100

 200

 300

 400

 500

 600

-500 -400 -300 -200 -100 0 100 200 300

(b) 05

-250 -200 -150 -100 -50 0 50 100

-200

-150

-100

-50

0

50

100

150 Ground Truth

ORB SLAM -No LC

Our Object SLAM

(c) 07

-300

-200

-100

 0

 100

 200

 300

 400

 500

-400 -300 -200 -100 0 100 200 300 400

(d) 06

-400

-200

 0

 200

 400

 600

 800

 1000

-400 -200 0 200 400 600 800 1000

(e) 08

-200

-100

 0

 100

 200

 300

 400

 500

-300 -200 -100 0 100 200 300 400

(f) 09

-300

-200

-100

 0

 100

 200

 300

 400

 0 100 200 300 400 500 600 700

(g) 10

Fig. 11: Our object SLAM on KITTI odometry benchmark without loop closure detection and constant ground height
assumption. Red is ground truth pose estimation. Blue is our object SLAM result. Green is ORB SLAM without loop detection.
Objects can reduce monocular scale drift and improve pose estimation accuracy.

as Seq 02, 06, 10, mainly because there are not many objects
visible over long distance causing large scale drift. Therefore,
we also propose a simple method to combine ground height
assumption with our object SLAM. If there are no objects
visible in recent 20 frames, we fit a ground plane from
point cloud then scale camera poses and local map based
the constant ground height assumption. As shown in Table
IV, the fourth row “ground based/Ours” representing ORB
SLAM only with our simple ground scaling and without
objects, achieves good performance with 3.39% translation
error. The row “Combined”, which combines ground scaling
with objects, further reduces the error to 1.78% and achieves
the state-of-art accuracy of monocular SLAM on the KITTI
benchmark. Note that ground plane based approaches also
have their limitations for example they won’t work for aerial
vehicle or handheld cameras. They will also fail when the
ground is not visible such as frames in Fig. 5 of KITTI 07.
The front dynamic car occludes the ground for a long time
and therefore many ground-based approaches fail or perform
poorly on KITTI 07.

D. Dynamic object
We also test the algorithm on the dynamic car sequences on

the KITTI datasets as shown in Fig. 12(a). We select some raw
sequences with more dynamic objects observed over a long
time shown in Table V. The full name of the sequences is
“2011 0926 00xx”. The first four sequences also correspond
to Seq 3, 4, 5, 18 in KITTI tracking dataset. Most cars in these
sequences are moving. Ground truth object annotations are
available for all or some frames and ground truth camera poses
are also provided by GPS/INS.

(a)

-5 0 5
5

10

15

20

25

30

35

Truth

Single

SLAM

(b)

(c)

Fig. 12: Dynamic object SLAM result on KITTI. (a) Sample
frames of single image cuboid detection. (b) Top view compar-
ison of 3D detections in single image and multi-view SLAM.
(c) Camera and object pose estimation. The red curve starting
from left is the camera’s trajectory. Other curves attached with
rectangle markers represent the dynamic object’s trajectory.

1) Qualitative results: Some single image detection ex-
amples are shown in Fig. 12(a). Fig. 12(b) shows the top
view of the first image of Fig. 12(a). For the two distant
front cars, even though the 2D image cuboid detection looks
good, it actually has a large 3D distance error. This is because
only the car’s back faces are observable causing ill-constraint

12

TABLE V: Dynamic Object Detection and Camera Pose Estimation on KITTI Raw Sequence

Seq 13 14 15 04 56 32 Mean
Object Single view 0.41 0.11 0.42 0.11 0.54 0.34 0.32
3D IoU Ours 0.51 0.28 0.44 0.42 0.42 0.26 0.39
Trans ORB-No LC 2.34 11.5 2.4 2.31 8.45 2.76 4.96

error(m) Ours 0.99 7.62 1.94 1.50 5.39 3.07 3.42

TABLE VI: Dynamic Object Localization Comparison on KITTI Raw Sequence

Seq 04 47 56
MeanObj. ID 1 2 3 6 0 4 9 12 0

No. Frames 91 251 284 169 170 96 94 637 293
Depth [51] 4.1 6.8 5.3 7.3 9.6 11.4 7.1 10.5 5.5 7.9
error [32] 6.0 5.6 4.9 5.9 5.9 12.5 7.0 8.2 6.0 6.8
(%) Ours 5.1 11.1 1.8 2.5 9.3 3.8 6.6 2.8 0.8 4.9

Time/ s

0 5 10 15 20 25 30 35 40

V
e
lo

c
it
y
/
m

/s

4

6

8

10

12

14

16

Estimated

Truth

Fig. 13: Dynamic car velocity estimation on KITTI Seq 0047.
Our SLAM algorithm based on the piecewise constant motion
assumption can correctly estimate the moving object’s velocity
using just a monocular camera.

single image detection. After multi-view dynamic object BA,
the blue optimized object matches better with the ground
truth mostly due to the motion model constraints. However, it
can sometimes decrease the accuracy for example the bottom
object in the figure. Some possible reasons are due to the
noisy 2D and 3D object detection, especially for the close
objects. The constant motion assumption may also cause errors
when the vehicle accelerates or decelerates. Fig. 12(c) shows
all the dynamic objects’ history poses as well as camera poses.
The objects’ trajectories are smooth due to the motion model
constraints.

Fig. 13 shows the velocity estimation of one of objects in
on Seq 0047 data. We can see that the computed ground truth
object velocity also changes with time, therefore, the piecewise
constant velocity motion explained in Sec. VI-C is reasonable.
With a monocular camera, the proposed algorithm can roughly
estimate the object’s absolute velocity.

2) Quantitative results: Since there is no current monocular
SLAM utilizing dynamic objects to change camera pose
estimation, we thus directly compare with the state-of-the-art
featured based ORB SLAM. Though it already has some mod-
ules to detect dynamic points as outliers based on reprojection
error, to compare with ORB SLAM fairly, we directly remove
features lying in the dynamic object areas and report its pose
estimation result. From Table V, we can see our method
can improve the camera pose estimation on most sequences

TABLE VII: Runtime of Different System Components

Dataset Tasks Runtime
(mSec)

Tracking thread (per frame) 33.0
Outdoor No object BA 182.7
KITTI Static object BA 194.5

Dynamic object BA 365.2

Indoor
ICL room

Tracking thread (per frame) 15.0
No object BA 49.5

Static object BA 55.3

especially when objects can be observed and tracked over
many consecutive frames for example in the first four datasets.
This is because with more observations, the objects’ velocity
and dynamic points’ position can be estimated more accurately
and thus have more effect on the camera pose estimation, while
in the last two sequences, objects are usually observed by only
a few frames.

We also compare the 3D object localization with other
monocular methods shown in Table VI. The most similar one
to us is [32] which utilized semantic and geometric costs
to optimize object locations, but their approach assumed the
camera poses are already solved and fixed. We utilize the same
metric in [32] to measure the relative object depth error in each
frame and the number is taken directly from the paper. From
the table, our method outperforms others on most sequences.
In the sequence 56, the relative depth error is only 0.8%.

E. Time Analysis

Finally, we provide the computational analysis of our sys-
tem. The experiments are carried out on Intel i7-4790 CPU
at 4.0 GHz. The 2D object detection time depends on the
GPU power and CNN model complexity. Many algorithms
such as Yolo can run in real time. After getting the 2D boxes,
our 3D cuboid detection takes about 20ms per image and the
main computation of it is edge detection. For the SLAM part
implemented in C++ on CPU, we show the time usage in Table
VII. The computation strongly depends on the datasets with
different image size and textures, therefore we choose two
representative sequences: outdoor KITTI 07 at 10Hz shown in
Fig. 1(b) and indoor ICL-NUIM livingroom dataset at 30Hz
shown in Fig. 1(a). On average, there are 5 object landmarks

13

in each local BA optimization in the two datasets. The tracking
thread includes the ORB point feature detection and camera
pose tracking for each frame which can run in real time
from the table. The bundle adjustment (BA) map optimization
occurs when a new keyframe is created, therefore it does not
need to run in real-time. We show the time usage of BA when
different types of landmarks exist. In the static environment,
adding objects into the system only increases the optimization
by 7%. This is reasonable as there are only a few objects
in the local map optimization. For the dynamic cases, due to
many new variables and measurements of dynamic points, the
computation increases by a factor of two.

IX. CONCLUSION

In this work, we convey a general approach for monocular
3D object detection and SLAM mapping without prior object
models, in both static and dynamic environments. More impor-
tantly, we demonstrate for the first time, that semantic object
detection and geometric SLAM can benefit each other in one
unified framework.

For the single image 3D object detection, we propose
a new method to efficiently generate high quality cuboid
proposals from the 2D bounding box based on vanishing
points. Proposals are then scored efficiently by image cues. In
the SLAM part, we propose an object level SLAM with novel
measurement functions between cameras, objects and points,
and new object association methods to robustly handle occlu-
sion and dynamic movement. Objects can provide long range
geometric and scale constraints for camera pose estimation.
In turn, SLAM also provides camera pose initialization for
detecting and refining 3D object. For the dynamic scenarios,
we also show that with the new measurement constraints, the
moving object and point can also improve the camera pose
estimation through the tightly coupled optimization.

We evaluate the two parts on different indoor and outdoor
datasets and achieve the best accuracy of 3D object detection
on SUN RGBD subset data and camera pose estimation on
KITTI odometry datasets. In the future, we are also interested
in the dense mapping using objects. More complete scene
understanding can also be integrated with SLAM optimization.

REFERENCES

[1] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask
R-CNN. IEEE International Conference on Computer Vision (ICCV),
2017.

[2] Yu Xiang, Wongun Choi, Yuanqing Lin, and Silvio Savarese.
Subcategory-aware convolutional neural networks for object proposals
and detection. In Applications of Computer Vision (WACV), 2017 IEEE
Winter Conference on, pages 924–933. IEEE, 2017.

[3] Florian Chabot, Mohamed Chaouch, Jaonary Rabarisoa, Céline Teulière,
and Thierry Chateau. Deep MANTA: A coarse-to-fine many-task
network for joint 2d and 3D vehicle analysis from monocular image. In
IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pages 2040–2049, 2017.

[4] Raul Mur-Artal, JMM Montiel, and Juan D Tardos. ORB-SLAM: a
versatile and accurate monocular SLAM system. IEEE Transactions on
Robotics, 31(5):1147–1163, 2015.

[5] Shichao Yang and Sebastian Scherer. Direct monocular odometry using
points and lines. In IEEE international conference on Robotics and
automation (ICRA). IEEE, 2017.

[6] Michael Kaess. Simultaneous localization and mapping with infinite
planes. In International Conference on Robotics and Automation (ICRA),
pages 4605–4611. IEEE, 2015.

[7] J Krishna Murthy, GV Sai Krishna, Falak Chhaya, and K Madhava
Krishna. Reconstructing vehicles from a single image: Shape priors for
road scene understanding. In Robotics and Automation (ICRA), 2017
IEEE International Conference on, pages 724–731. IEEE, 2017.

[8] Joseph J Lim, Hamed Pirsiavash, and Antonio Torralba. Parsing IKEA
objects: Fine pose estimation. In IEEE International Conference on
Computer Vision, pages 2992–2999, 2013.

[9] Wadim Kehl, Fabian Manhardt, Federico Tombari, Slobodan Ilic, and
Nassir Navab. SSD-6D: Making rgb-based 3D detection and 6d pose
estimation great again. In IEEE International Conference on Computer
Vision (ICCV), 2017.

[10] Jianxiong Xiao, Bryan Russell, and Antonio Torralba. Localizing 3D
cuboids in single-view images. In Advances in neural information
processing systems (NIPS), pages 746–754, 2012.

[11] Varsha Hedau, Derek Hoiem, and David Forsyth. Thinking inside the
box: Using appearance models and context based on room geometry.
In European Conference on Computer Vision (ECCV), pages 224–237.
Springer, 2010.

[12] Xiaozhi Chen, Kaustav Kundu, Ziyu Zhang, Huimin Ma, Sanja Fidler,
and Raquel Urtasun. Monocular 3D object detection for autonomous
driving. In IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), pages 2147–2156, 2016.

[13] Arsalan Mousavian, Dragomir Anguelov, John Flynn, and Jana Kosecka.
3D bounding box estimation using deep learning and geometry. Com-
puter Vision and Pattern Recognition (CVPR), IEEE Conference on,
2017.

[14] Peiliang Li, Tong Qin, and andShaojie Shen. Stereo vision-based
semantic 3D object and ego-motion tracking for autonomous driving.
In The European Conference on Computer Vision (ECCV), September
2018.

[15] Jakob Engel, Vladlen Koltun, and Daniel Cremers. Direct sparse odom-
etry. IEEE Transactions on Pattern Analysis and Machine Intelligence,
2017.

[16] Jingming Dong, Xiaohan Fei, and Stefano Soatto. Visual-inertial-
semantic scene representation for 3D object detection. In IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR), 2017.

[17] Sudeep Pillai and John Leonard. Monocular SLAM supported object
recognition. Robotics: Science and systems, 2015.

[18] Amaury Dame, Victor A Prisacariu, Carl Y Ren, and Ian Reid. Dense
reconstruction using 3d object shape priors. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 1288–
1295, 2013.

[19] Sid Yingze Bao, Mohit Bagra, Yu-Wei Chao, and Silvio Savarese.
Semantic structure from motion with points, regions, and objects. In
Conference on Computer Vision and Pattern Recognition (CVPR), pages
2703–2710. IEEE, 2012.

[20] Renato F Salas-Moreno, Richard A Newcombe, Hauke Strasdat, Paul HJ
Kelly, and Andrew J Davison. SLAM+: Simultaneous localisation and
mapping at the level of objects. In IEEE Conference on Computer Vision
and Pattern Recognition, pages 1352–1359, 2013.

[21] Duncan Frost, Victor Prisacariu, and David Murray. Recovering stable
scale in monocular slam using object-supplemented bundle adjustment.
IEEE Transactions on Robotics, 34(3):736–747, 2018.

[22] Edgar Sucar and Jean-Bernard Hayet. Bayesian scale estimation for
monocular SLAM based on generic object detection for correcting
scale drift. IEEE International Conference on Robotics and Automation
(ICRA), 2018.

[23] Dorian Gálvez-López, Marta Salas, Juan D Tardós, and JMM Montiel.
Real-time monocular object SLAM. Robotics and Autonomous Systems,
75:435–449, 2016.

[24] Cosimo Rubino, Marco Crocco, and Alessio Del Bue. 3D object
localisation from multi-view image detections. IEEE transactions on
pattern analysis and machine intelligence, 40(6):1281–1294, 2018.

[25] Lachlan James Nicholson, Michael J Milford, and Niko Sunderhauf.
QuadricSLAM: Dual quadrics from object detections as landmarks in
object-oriented SLAM. IEEE Robotics and Automation Letters, 4(1):1–
8, 2019.

[26] Sean L Bowman, Nikolay Atanasov, Kostas Daniilidis, and George J
Pappas. Probabilistic data association for semantic SLAM. In Robotics
and Automation (ICRA), 2017 IEEE International Conference on, pages
1722–1729. IEEE, 2017.

[27] Shichao Yang, Yu Song, Michael Kaess, and Sebastian Scherer. Pop-up
SLAM: a semantic monocular plane SLAM for low-texture environ-
ments. In International conference on Intelligent Robots and Systems
(IROS). IEEE, 2016.

[28] Nan Yang, Rui Wang, Jörg Stückler, and Daniel Cremers. Deep virtual
stereo odometry: Leveraging deep depth prediction for monocular direct

14

sparse odometry. In European Conference on Computer Vision, pages
835–852. Springer, 2018.

[29] Sen Wang, Ronald Clark, Hongkai Wen, and Niki Trigoni. Deepvo:
Towards end-to-end visual odometry with deep recurrent convolutional
neural networks. In Robotics and Automation (ICRA), 2017 IEEE
International Conference on, pages 2043–2050. IEEE, 2017.

[30] Ioan Andrei Bârsan, Peidong Liu, Marc Pollefeys, and Andreas Geiger.
Robust dense mapping for large-scale dynamic environments. In IEEE
International Conference on Robotics and Automation (ICRA), 2018.

[31] Berta Bescós, José M Fácil, Javier Civera, and José Neira. DynSLAM:
Tracking, mapping and inpainting in dynamic scenes. IEEE Robotics
and Automation Letters, 2018.

[32] Shiyu Song and Manmohan Chandraker. Joint SFM and detection cues
for monocular 3D localization in road scenes. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pages 3734–3742,
2015.

[33] N Dinesh Reddy, Prateek Singhal, Visesh Chari, and K Madhava Kr-
ishna. Dynamic body VSLAM with semantic constraints. In Intelligent
Robots and Systems (IROS), 2015 IEEE/RSJ International Conference
on, pages 1897–1904. IEEE, 2015.

[34] Mina Henein, Gerard Kennedy, Robert Mahony, and Viorela Ila. Ex-
ploiting rigid body motion for SLAM in dynamic environments. In IEEE
International Conference on Robotics and Automation (ICRA), 2018.

[35] Richard Hartley and Andrew Zisserman. Multiple view geometry in
computer vision. Cambridge university press, 2003.

[36] Rafael Grompone von Gioi, Jeremie Jakubowicz, Jean-Michel Morel,
and Gregory Randall. LSD: A fast line segment detector with a false
detection control. IEEE Transactions on Pattern Analysis & Machine
Intelligence, (4):722–732, 2008.

[37] Rainer Kümmerle, Giorgio Grisetti, Hauke Strasdat, Kurt Konolige, and
Wolfram Burgard. g2o: A general framework for graph optimization.
In Robotics and Automation (ICRA), IEEE International Conference on,
pages 3607–3613. IEEE, 2011.

[38] Michael Kaess, Ananth Ranganathan, and Frank Dellaert. iSAM:
Incremental smoothing and mapping. Robotics, IEEE Transactions on,
24(6):1365–1378, 2008.

[39] Steven M LaValle. Planning algorithms. Cambridge university press,
2006.

[40] João F Henriques, Rui Caseiro, Pedro Martins, and Jorge Batista. High-
speed tracking with kernelized correlation filters. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 37(3):583–596, 2015.

[41] Joseph Redmon and Ali Farhadi. YOLO9000: better, faster, stronger.
Computer Vision and Pattern Recognition (CVPR), 2017.

[42] Zhaowei Cai, Quanfu Fan, Rogerio Feris, and Nuno Vasconcelos. A
unified multi-scale deep convolutional neural network for fast object
detection. In ECCV, 2016.

[43] Shuran Song, Samuel P Lichtenberg, and Jianxiong Xiao. SUN RGB-D:
A RGB-D scene understanding benchmark suite. In IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pages 567–576,
2015.

[44] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we ready for
autonomous driving? the kitti vision benchmark suite. In Computer
Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on,
pages 3354–3361. IEEE, 2012.

[45] Xiaozhi Chen, Kaustav Kundu, Yukun Zhu, Andrew G Berneshawi,
Huimin Ma, Sanja Fidler, and Raquel Urtasun. 3D object proposals
for accurate object class detection. In Advances in Neural Information
Processing Systems, pages 424–432, 2015.

[46] Wongun Choi, Yu-Wei Chao, Caroline Pantofaru, and Silvio Savarese.
Understanding indoor scenes using 3D geometric phrases. In IEEE
Conference on Computer Vision and Pattern Recognition, pages 33–40,
2013.

[47] Jürgen Sturm, Nikolas Engelhard, Felix Endres, Wolfram Burgard,
and Daniel Cremers. A benchmark for the evaluation of RGB-D
SLAM systems. In Intelligent Robots and Systems (IROS), IEEE/RSJ
International Conference on, pages 573–580. IEEE, 2012.

[48] A. Handa, T. Whelan, J.B. McDonald, and A.J. Davison. A benchmark
for RGB-D visual odometry, 3D reconstruction and SLAM. In IEEE
Intl. Conf. on Robotics and Automation, ICRA, Hong Kong, China, May
2014.

[49] Bhoram Lee, Kostas Daniilidis, and Daniel D Lee. Online self-
supervised monocular visual odometry for ground vehicles. In Robotics
and Automation (ICRA), 2015 IEEE International Conference on, pages
5232–5238. IEEE, 2015.

[50] Shiyu Song, Manmohan Chandraker, and Clark C Guest. High accuracy
monocular SFM and scale correction for autonomous driving. IEEE
transactions on pattern analysis and machine intelligence, 38(4):730–
743, 2016.

[51] Shiyu Song and Manmohan Chandraker. Robust scale estimation in real-
time monocular SFM for autonomous driving. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pages
1566–1573, 2014.

Shichao Yang received the B.S in Mechanical
Engineering from Shanghai Jiao Tong University,
China in 2013, and Ph.D. degree in Mechanical
Engineering in 2018 at Carnegie Mellon University,
under the supervision of Sebastian Scherer in the
Robotics Institute.

He currently works as a Research Scientist at
Facebook Reality Lab. His research focuses on si-
multaneous localization and mapping (SLAM) and
semantic scene understanding, with application to
autonomous robots, and AR/VR.

Sebastian Scherer is a Senior Systems Scientist
at the Robotics Institute (RI) at Carnegie Mellon
University (CMU). His research focuses on enabling
autonomy for unmanned rotorcraft to operate at low
altitude in cluttered environments. He and His team
have shown the fastest and most tested obstacle
avoidance on an Yamaha RMax (2006), the first ob-
stacle avoidance for micro aerial vehicles in natural
environments (2008), and the first (2010) and fastest
(2014) automatic landing zone detection and landing
on a full-size helicopter. Dr. Scherer received his

B.S. in Computer Science, M.S. and Ph.D. in Robotics from CMU in 2004,
2007, and 2010.

	Introduction
	Related Work
	Single image 3D object detection
	Multi-view object SLAM
	Dynamic environment SLAM

	Single Image 3D Object Detection
	3D box proposal generation
	Principles
	Get 2D corners from the VP
	Get 3D box pose from 2D corners
	Sample VP and Summary

	Proposal scoring
	Distance error dist(O,I)
	Angle alignment error angle(O,I)
	Shape error shape(O)

	Object SLAM
	Bundle Adjustment Formulation
	Measurement Errors
	Camera-Object measurement
	Object-point measurement
	Camera-point measurement

	Data association

	Dynamic SLAM
	Notations
	SLAM optimization
	Object motion model
	Dynamic point observation

	Dynamic data association

	Implementations
	Object detection
	Object SLAM
	Dynamic object

	Experiments - Single View Detection
	Proposal Recall
	Final detection

	Experiments - Object SLAM
	TUM RGBD and ICL-NUIM dataset
	Collected chair dataset
	KITTI Dataset
	KITTI raw sequence
	KITTI odometry benchmark

	Dynamic object
	Qualitative results
	Quantitative results

	Time Analysis

	Conclusion
	References
	Biographies
	Shichao Yang
	Sebastian Scherer

